
Design for Descent: What Makes a Shape Grammar Easy to Optimize?
MILIN KODNONGBUA∗, University of Washington, USA
ZIHAN JACK ZHANG∗, University of Washington, USA
NICHOLAS SHARP, NVIDIA, USA
ADRIANA SCHULZ, University of Washington, USA

Fig. 1. Successive steps of a tree grammar designed for descent being optimized to match the SIGGRAPH logo. This work shows how careful consideration of
the needs of optimization motivates the design of shape grammars well-suited for descent, turning difficult inverse tasks on structured representations into a
straightforward gradient-based iterative optimization on the user’s objectives.

Shape grammars offer a powerful framework for computational design, but
synthesizing shape programs to achieve specific goals remains challenging.
Inspired by the success of gradient-based optimization in high-dimensional,
nonconvex spaces such as those in machine learning, we ask: what makes a
shape grammar amenable to gradient-based optimization? To explore this,
we introduce Stochastic Rewrite Descent (SRD), an algorithm that interleaves
structural rewrites with continuous parameter updates, taking steps in both
to optimize a given objective. We analyze the core challenges which have
previously prevented optimizing shape programs via descent, and identify a
set of desirable properties for grammars that support effective optimization,
along with concrete grammar design recommendations to achieve them. We

∗Equal contribution

Authors’ Contact Information: Milin Kodnongbua, milink@cs.washington.edu, Uni-
versity of Washington, Seattle, USA; Zihan Jack Zhang, jzhang18@cs.washington.edu,
University of Washington, Seattle, USA; Nicholas Sharp, nsharp@nvidia.com, NVIDIA,
Seattle, USA; Adriana Schulz, adriana@cs.washington.edu, University of Washington,
Seattle, USA.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.
SA Conference Papers ’25, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2137-3/2025/12
https://doi.org/10.1145/3757377.3764004

validate this approach across three shape grammars, demonstrating its effec-
tiveness in diverse domains including image fitting, text-driven generation,
and topology optimization. Through ablations and comparisons, we show
that grammars satisfying our proposed properties lead to significantly better
optimization performance. The goal of this work is to open the door to more
general and flexible computational paradigms for inverse design with shape
grammars.

CCS Concepts: • Computing methodologies→ Shape analysis.

Additional KeyWords and Phrases: optimization, shape grammar, procedural
modeling

ACM Reference Format:

Milin Kodnongbua, Zihan Jack Zhang, Nicholas Sharp, and Adriana Schulz.
2025. Design for Descent: What Makes a Shape Grammar Easy to Optimize?.
In SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers ’25), Decem-
ber 15–18, 2025, Hong Kong, Hong Kong. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3757377.3764004

1 Introduction
Procedural modeling was introduced to the graphics community in
the late 1980s [Prusinkiewicz 1986] and quickly gained popularity
for its ability to generate a wide variety of shapes from simple shape
grammars. However, a longstanding challenge has been control—
finding an optimal sequence of grammar productions to achieve a

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3757377.3764004
https://doi.org/10.1145/3757377.3764004

2 • Kodnongbua et al.

desired output. This inverse problem is difficult due to the complex
discrete structure of the production space. As a result, despite the fact
that many problems in computational design are naturally expressed
as optimization of some objective, solutions are instead typically
implemented through hand-crafted, domain-specific algorithms.

Meanwhile black-box gradient-based optimization has beenwidely
successful for inverse design tasks in other domains like geometric
optimization and reconstruction. In machine learning it is common
to simply write down any desired set of objectives and iteratively
descend to a solution, leveraging the effectiveness of stochastic gra-
dient descent on high-dimensional nonconvex spaces. The same
should be possible on structured shape grammar representations,
but has not yet been realized.

This work revisits inverse procedural modeling through the lens
of gradient descent. Our key insight is to reverse the conventional
perspective: rather than startingwith a fixed grammar and designing
an algorithm to search over it, we instead ask—what makes a general
shape grammar amenable to optimization via gradient descent? This
reframing shifts the focus to the grammar design itself, allowing us
to construct grammars that are intrinsically easier to control and
optimize.
First, we must define how gradient descent operates over shape

grammars. While parameter gradients are relatively straightforward
to compute, the large combinatorial space of production rule ap-
plications—called rewrites—poses a challenge, as many rewrites
change both the number and meaning of parameters. We introduce
stochasticity to manage this complexity: at each step, we sample
a finite, randomly selected set of rewrites and apply all promising
ones in parallel. Our optimization scheme, SRD (Stochastic Rewrite
Descent), interleaves this step with traditional gradient descent on
continuous parameters, allowing coordinated progress across both
the discrete and continuous components of the grammar.
However, even with a good optimization algorithm, descending

on many grammars quickly gets trapped in bad minima, or ex-
plodes to nonsensical solutions. This motivates a more fundamental
question: what makes a shape grammar amenable to descent-based
optimization? Much like neural networks are parameterized to al-
low nonconvex optimization to succeed, how should grammars be
designed for inverse optimization tasks?
We identify four properties of grammars that make gradient-

based optimization practical. Formally stated later, they ask that:
(1) any target shape be reachable from any starting point through
some sequence of rewrites and parameter updates; (2) those rewrites
behave smoothly enough that the space is as similar as possible to
an ordinary continuous space; (3) a desired shape can be expressed
in many different parameter configurations, giving the optimizer
plenty of improving directions and reducing the risk of poor local
minima; and (4) each update can be projected back onto the feasible
set so hard design constraints are always respected.

We validate the importance of these properties across a range of
applications on several grammars. Experiments show that classic
rewrite systems like L-systems can be redesigned to express the
shape space of trees while incorporating these properties to enable
optimization, while ablations and comparisons to validate that the
properties we identify indeed make gradient descent succeed. We
demonstrate how other important problems such as parametric

curve fitting, text-driven CSG construction, and topology optimiza-
tion can be naturally expressed within our framework, allowing
inverse procedural modeling to solve complex design challenges.
We hope that this study will open the door to more widespread
use of inverse optimization on shape grammars, integrating natu-
rally with modern differentiable optimization. Code is available at
https://github.com/milmillin/d4descent.

2 Related Work
Procedural Modeling and Control. Procedural models [Müller et al.

2006; Smelik et al. 2014; Wonka et al. 2003] generate complex struc-
tures by repeatedly applying production rules from a formal gram-
mar, such as a shape grammar [Stiny 1975]. A key challenge is
control: finding a sequence of rules—a program—that generates a
structure satisfying a given specification [Aliaga et al. 2016]. This
can be framed as a challenging mixed discrete-continuous optimiza-
tion problem. A common strategy is to use global search algorithms
to explore the discrete program structure while using local methods
to optimize continuous parameters. Prominent approaches include
Markov Chain Monte Carlo (MCMC) and its variants [Ritchie et al.
2015; Talton et al. 2011; Vanegas et al. 2012], which iteratively ran-
domly walks over the production rules in search of better solutions.
MCMC have also been applied to diverse domains like material
graphs [Guo et al. 2020a], robots [Zhao et al. 2020], and sheet metal
design [Barda et al. 2023]. Other search-based techniques include
evolutionary algorithms [Krs et al. 2021] and analytical formal meth-
ods [Du et al. 2018; Ellis et al. 2018; Lau et al. 2011]. More recently,
neural networks have been used to guide the selection of production
rules [Plocharski et al. 2024; Ritchie et al. 2016]. Instead of propos-
ing another sophisticated search algorithm, our work asks a more
fundamental question: what properties must a grammar possess to
make this search tractable for simple gradient descent?

Gradient-Based Optimization of Procedural Models. Recent work
has explored making procedural models differentiable to enable
gradient-based optimization. Several methods focus on optimizing
the continuous parameters of a program, assuming a fixed discrete
structure [Cascaval et al. 2022; Krs et al. 2021; Michel and Boubekeur
2021; Yuan et al. 2024]. While effective for local editing, these ap-
proaches cannot alter the program’s topology. To address this, Liu
et al. [2024] relax the discrete structure using fuzzy logic, allowing
for global search over CSG trees. However, this relaxation means
that intermediate shapes during optimization are not guaranteed to
be valid. While gradient-informed MCMCmethods exist [Wyse et al.
2012], they have not been applied to procedural modeling. Our Sto-
chastic Rewrite Descent (SRD) algorithm, by contrast, exploits gradi-
ent information on both discrete and continuous components. While
SRD is a straightforward adaptation of stochastic gradient descent
(SGD), the challenge lies in making discrete changes descendable
and avoiding local minima through careful grammar design.

Grammar Design and Generation. Grammar design plays a central
role in program synthesis. For instance, the programming languages
community often uses grammar decomposition to define concise sub-
sets of programs and enable faster solvers; see [Cai et al. 2025] for a
recent example in register allocation. There has also been significant

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Design for Descent: What Makes a Shape Grammar Easy to Optimize? • 3

work on automating grammar design, including shape grammar
inference from a single shape across several domains [Demir and
Aliaga 2018; Guo et al. 2020b; Merrell 2023; Talton et al. 2012; Wu
et al. 2013], and recent efforts focus on learning from sets of exam-
ples [Cao et al. 2023; Ellis et al. 2023; Jones et al. 2023].
Our work builds on this literature but introduces a key twist:

while traditional approaches aim to minimize the number of rules
to simplify the shape space, we show that enabling gradient descent
often benefits from more rules—overparameterizing the space to
make optimization easier. This may seem obvious in hindsight, but
it marks a significant departure from standard grammar design
principles.

Designing Optimization Landscapes. This work takes inspiration
from optimization and machine learning to design grammars suit-
able for descent. In optimization, many properties have been iden-
tified for successful optimization of functions, from convexity and
Lipschitz continuity to the Polyak-Łojasiewicz condition and many
more [Karimi et al. 2016; Kurdyka 1998], which motivate our design
of jump-continuous rewrites. Other work has focused on defining a
continuous shape space with a well-behaved metric over the outputs
of a grammar, enabling continuous analysis and optimization [Wang
et al. 2018]. In the context of neural network optimization the role
of overparameterization and stochastic descent for effective opti-
mization in nonconvex landscapes has been widely studied [Jacot
et al. 2018; Sankararaman et al. 2020], which inspires our redundant
landscapes and stochastic optimization for grammars.

3 The Framework
In this section, we present our approach to procedural generation
through gradient-based optimization. We first establish our design
space and formalize the optimization problem we wish to solve.
Then, we discuss the key grammar properties and our optimization
strategy that effectively navigates the design space given some
objective.

3.1 Problem Setup
Shape grammar. Distinct from string-based grammars, shape

grammars [Stiny 1975] define their languages and rewrite rules
directly on shapes. We define a parametric shape grammar as a
tuple 𝐺 = (𝑉 , Σ, 𝑅, 𝜔) where
• 𝑉 is a finite set of geometric primitives
• Σ is the set of formal parameters
• 𝑅 is a finite set of rewrite rules 𝜌 : (𝑥, 𝑝) → (𝑦, 𝑞) where
(𝑥, 𝑝), (𝑦, 𝑞) ∈ 𝑉 + × Σ+
• 𝜔 ∈ 𝑉 + × Σ+ is the initial shape (axiom)

Here, the set𝑉 + is formed by finite arrangements of primitives in𝑉 ,
where each primitive can appear multiple times. Each rewrite rule
𝜌 ∈ 𝑅 may be guarded by a predicate 𝜙𝜌 which determines whether
𝜌 can be applied.

Design Space. Let 𝑆 = 𝑉 + be the set of discrete structures gen-
erated by the parametric shape grammar 𝐺 , where each structure
𝑠 ∈ 𝑆 is associated with a vector of continuous parameters 𝑝 ∈ R𝑑 (𝑠)

where 𝑑 (𝑠) is the dimensionality of structure 𝑠 . The design space is
the disjoint union of all (possibly different-dimensional) parameter

spaces 𝑋 =
⊔

𝑠∈𝑆 {𝑠} × R𝑑 (𝑠) . A state (𝑠, 𝑝) ∈ 𝑋 can be viewed as a
particular derivation 𝑠 from the grammar𝐺 together with a realized
vector of parameters 𝑝.

Optimization Objective. We consider a differentiable rendering
function 𝐼 : 𝑋 → D, which maps a state in the grammar to some
representation of the shape, as well as a differentiable objective
function 𝑓 : D → R and a non-differentiable objective function
𝑔 : 𝑋 → R (e.g., simplicity metric). For instance, 𝐼 might yield an
image for visual objectives or a mesh for a physics-based objective.
Our problem can be formulated as finding (𝑠∗, 𝑝∗) such that

(𝑠∗, 𝑝∗) = argmin
𝑠∈𝑆,𝑝∈R𝑑 (𝑠)

𝑓 (𝐼 (𝑠, 𝑝)) + 𝑔(𝑠, 𝑝) . (1)

This is a challenging optimization problem as wemust search over
both the discrete space of structures 𝑆 and the space of continuous
parameters whose dimensionality 𝑑 (𝑠) varies with the structure.

3.2 Designing Optimization-Friendly Grammars
A typical descent-based optimizer utilizes gradient information to
guide parameter changes. For shape grammars, the process also in-
volves evaluating how rewrites affect the objective, hence the choice
of rewrite rules impacts the optimization trajectory. In Section 3.3
we will describe one such optimization scheme, but first we con-
sider an essential question common to any descent-like optimization
scheme:�
�

�

What makes a shape grammar amenable to
gradient-based optimization?

Indeed, even with a good optimization algorithm, naively per-
forming descent on shape grammars for various tasks will typically
explode into nonsensical shapes (e.g., when rewrites only increase
the complexity) or get trapped in poor local minima. The issue is that
the grammars themselves are poorly-suited as parameterizations
for the optimization problem, but we argue that this can be greatly
improved by designing grammars with optimization in mind. Some
of these properties are simple and intuitive, while others are more
subtle: we hope that systemically enumerating them will advance
the use of descent-style procedures for optimizing shape grammars.
The analysis is organized as a set of properties which grammars
should satisfy (paragraph headings below), as well as a collection
of concrete recommendations for designing grammars to achieve
those properties (bolded inline, and summarized in Table 1).

Reachable Solutions. The most basic essential property is that it
should be possible to reach a desired shape from any other shape
in the space via some sequence of rewrites and parameter updates.
For example, consider that many grammars are constructive, with
rewrites to build-up a shape from an axiom, one primitive at a time.
In such a constructive grammar, any shape is reachable from the
axiom, but shapes are generally not reachable from other shapes,
because there is no rewrite to remove a primitive—this is a huge
impediment to gradient-based optimization, as mistakes may be
impossible to correct. This is easily resolved via our first design
principle: Reversibility. Any rewrite present in the grammar

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

4 • Kodnongbua et al.

Table 1. The suggested guidelines for designing grammars for descent. Section 3.2 systematical considers desirable properties, condensed here to a set of
concrete recommendations. These are intended to be guidelines rather than hard requirements: they need not be strictly satisfied by all rewrites, it may even
be contradictory to attempt to satisfy them all simultaneously for a given task. In Section 6 we experimentally validate the effect of these rules improving the
efficacy of inverse optimization in several settings.

Design Guidelines Description Definition Examples

Reversibility

If there is a rule 𝐴→ 𝐵,
there should also be a rule 𝐵 → 𝐴

∀𝜌 ∈ 𝑅 : 𝜌 (𝑥, 𝑝) = (𝑦, 𝑞),
∃𝜌 ′ ∈ 𝑅 : 𝜌 ′ (𝑦, 𝑞) = (𝑥, 𝑝)

Split/Merge,
Add/Remove-Loop

Jump Continuity

Applying rules incurs negligible
instantaneous change in the shape

∀𝜌 ∈ 𝑅 applicable to (𝑥, 𝑝) ∈ 𝑋,��𝐼 (𝑥, 𝑝) − 𝐼 (𝜌 (𝑥, 𝑝))�� < 𝜖 . Local segment splitting

Local Geom. Control

There should exist rules which allow
any local change to a shape without

affecting distant parts

∀𝑣 ∈ 𝑉 , ∃𝜌 ∈ 𝑅 : 𝜌 (𝑣, 𝑝) = (𝑤,𝑞),
where |𝑤 | is small Add-Anywhere

Repairability

If constraints exist, there should exist
rules to repair a shape which

violates the constraints

If C ⊂ 𝑋 is a feasible region,
∀(𝑥, 𝑝) ∈ 𝑋, ∃𝜌 ∈ 𝑅 : 𝜌 (𝑥, 𝑝) ∈ C Resolve-Intersections

should have a complementary rewrite with the opposite effect. Con-
trasting with RJMCMC [Talton et al. 2011] where the ability to reach
a desired shape from any other shape is granted by resampling
derivation subtrees, reversibility becomes important for iterative
gradient-descent-style optimization where the optimizer needs to
incrementally correct small mistakes with fine-grained control.

Continuous-like Space. Shape grammars are an unusual space
for optimization: a collection of local representations each with
its own continuous parameters, linked by discrete rewrites which
transform between structures. During optimization, these rewrites
are potentially discontinuous jumps which can obstruct progress.
We argue that for gradient-based optimization to be successful, the
space should locally be as similar as possible to an ordinary contin-
uous space. In fact, all of the principles considered here could be
interpreted as aiming to make optimization in irregular, discretely-
structured grammars more akin to optimization in a smooth, well-
parameterized continuous space for which gradient-based optimiza-
tion is already broadly effective.
In particular, this motivates the next grammar design principle

which we call Jump Continuity. Rewrites should have negligi-
ble change on the shape itself, which in turn implies the objective
(assuming it is a continuous function of the shape) also changes con-
tinuously. This allows optimization to proceed smoothly through the
change of structure. This principle can also be understood through
the lens of Lipschitz continuity, a key property in continuous op-
timization that the change in objective from any step should be
bounded.

Redundant and Local Representations. Even if a grammar and a
given target objective function 𝑓 (·) behave as a nice continuous
space under rewrites, this space is likely nonconvex, and riddled
with local minima. Fortunately, in modern optimization it is in-
creasingly common to optimize nonlinear, nonconvex objectives
nonetheless, such as fitting neural networks via SGD. A key property
for the practical success such optimization is overparameterization:
that any desired solution should be representable by many possible

configurations of parameters, and there should be many trajecto-
ries through the high-dimensional parameter space along which
the objective improves. An analogous set of properties are bene-
ficial for successful gradient-based descent on nonconvex shape
grammar objectives. Ideally, there should be many structures which
yield a desirable solution, and many possible chains of rewrites
which would yield those structures. More precisely in the context
of shape grammars, the grammar should offer Local Geometric

Control: the ability to make localized changes anywhere on the
shape without affecting distant parts. This allows the optimizer to
explore the shape space effectively and helps avoid poor minima,
particularly when the objective depends on local geometric features,
creating an overparameterized space of many possible solutions.

Projection to Constraints. Many shape design problems include
nontrivial constraints thatmust be satisfied, such as non-intersecting
primitives. In continuous optimization, satisfying constraints is
much easier if one has access to a projection operation to project
onto the constraint set. Likewise, shape grammars subject to con-
straints benefit from Repairability: if constraints are present,
rewrites should exist which project the design back to satisfying
the constraint with minimal change. This frees the optimization
process, and the grammar designer, to take steps which temporarily
violate the constraints knowing that they will be re-enforced later,
and further enhancing redundancy by permitting additional rewrite
sequences which would otherwise be obstructed by constraints.

In general, we do not mean to imply that a grammar must always
strictly satisfy each of these properties; rather they are guidelines
that a grammar should follow as much as possible, to facilitate easy
and effective optimization.

Remark. One might attempt to demand even stronger guarantees
from grammar design, where the objective becomes convex with re-
spect to the rewrites, meaning that every local minimum is global
and steepest descent through rewrites converges to global optimum in
polynomial time. We show that such requirements are impossible for

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Design for Descent: What Makes a Shape Grammar Easy to Optimize? • 5

any grammar with an undecidable word problem (Thm. A.1 in supple-
mental). In general, shape grammars are Turing-complete [Stiny 1975],
making its word problem undecidable. This negative result motivates
us to design grammars for optimizers which have worked efficiently
over highly nonconvex loss landscapes, such as SGD.

3.3 Optimization Over Grammar Space
We now present a particular optimization algorithm for shape pro-
grams which we call Stochastic Rewrite Descent, formalized in
Algorithm 1 in supplemental. Recall that our goal is to optimize
the composite loss L(𝑠, 𝑝) = 𝑓 (𝐼 (𝑠, 𝑝)) + 𝑔(𝑠, 𝑝) over the transdi-
mensional design space 𝑋 =

⊔
𝑠∈𝑆 {𝑠} × R𝑑 (𝑠) . The key difficulty

is that the geometry of 𝑋 changes whenever a rewrite is applied:
the parameter dimension jumps from 𝑑 (𝑠) to 𝑑 (𝑠′). We therefore
alternate differential updates in the current parameter block with
discrete rewrites that switch between blocks.

Parameter Updates.Within a fixed structure 𝑠 we perform gradient
steps 𝑝 ← 𝑝 − 𝜂∇𝑝 𝑓 (𝑠, 𝑝). This updates the continuous parameters
only and does not change the structure 𝑠 of the shape.
Discrete Rewrites.We randomly select 𝐾 (64 in our implementa-

tion) valid rewrite rules, and for each rule 𝜌 ∈ 𝑅, we compute an
improvement estimate

ΔL𝜌 ≈
(
L(𝑠, 𝑝) − L(𝑠′, 𝑝)

)
with 𝑝 = LocalOptimize(𝑠′, 𝑝′),

where (𝑠′, 𝑝′) = 𝜌 (𝑠, 𝑝) and LocalOptimize performs one parame-
ter update step under the new structure. While ideally we would
apply all rewrites for which ΔL𝜌 is positive, this is not always
feasible as applying one rewrite may invalidate others. To address
this, we perform a greedy max-cover over the compatibility graph
implicitly defined by the neighborhood N(𝑠) (see Algorithm 2 in
the supplemental for details).

4 Case Study Grammars
To validate our framework, we engineer three shape grammars,
inspired by existing ones, to satisfy the recommended properties.We
provide a brief description for each grammar. The rewrites for each
grammar are summarized in Figure 2 and are listed in Appendix D
in supplemental.

4.1 Tree Grammar
We design a shape grammar for trees inspired by traditional para-
metric L-systems for trees. Our Tree grammar is an upward growing
binary tree where each node has a rendered leaf, the union of which
defines the shape of the tree. Each non-root node stores the length 𝑙
and turn angle 𝜃 relative to the parent. Every node stores the size of
the rendered leaf 𝑟 . We impose constraints on the maximum length,
absolute turn angle, and rendered leaf size. The repair operation
clamps length, turn angle, and rendered leaf size to their limits at
the end of each continuous step, and removes leaves with small
renderings.

4.2 Arc–Line (AL) Grammar
Circular arc and straight line primitives are important for creating
2D sketches in CAD systems. The Arc-Line Grammar can repre-
sent multiple, non-intersecting closed loops consisting of lines and

Tree Grammar (Tr)

AddLeaf

RemoveLeaf

Split

RemoveBranch
AddAnywhere

Arc-Line Grammar (AL)

Split

Merge

ToArc

ToLine

AddLoop

RemoveSmallLoop

ResolveIntersections Canonicalize

Union-Rectangles Grammar (UR)

Split Merge AddRectangle

AddHole RepairContained

Truncate

Fig. 2. The three representative shape grammars and their rewrites engi-
neered to satisfy our guidelines. Tree grammar produces a binary tree where
each node has a leaf (green circle). Arc-Line (AL) grammar produces shapes
with multiple loops containing arcs and lines. The winding number deter-
mines the insideness. Union-Rectangles (UL) grammar produces rotatable
and scalable rectangles.

circular arcs. Regions with winding number zero are considered
outside and inside otherwise. A line and an arc are parameterized
by the coordinates of their two endpoints (𝑥1, 𝑦1) and (𝑥2, 𝑦2) with
an arc having an additional parameter 𝑘 that controls the orthogo-
nal deviation from the midpoint. Non-exact operationsMerge and
ToLine are permitted only if the deviation is less than 𝜖 . All other
operations are exact up to numerical precision and do not change
the shape. The repair operations compute intersections and reroutes
intersecting loops so they no longer intersect, and also removes
loops with small area.

4.3 Union-Rect (UR) Grammar
The Union-Rect Grammar represents a shape composed by unioning
multiple rectangles. Each rectangle is parameterized by its midpoint

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

6 • Kodnongbua et al.

(𝑐𝑥 , 𝑐𝑦), its half-size 𝑠𝑥 and 𝑠𝑦 , and rotation angle 𝜃 . The repair op-
erations shrink portions of rectangles that are covered by other
rectangles in a way that does not change the union. This opera-
tion implies that fully enclosed rectangles get removed, as well as
removing small rectangles.

5 Results and Applications

5.1 Optimization Towards A Target Image
We first evaluate our approach on an image matching objective.
Specifically, given a shape (𝑠, 𝑝), our objective is the 𝐿2 distance
between a soft rasterization 𝐼 (𝑠, 𝑝) and a bitmap target 𝐼 ∗.

To obtain the target images for testing, we collect sketches from
the SketchGraph dataset [Seff et al. 2020] and filter for only those
that contain lines and arcs. We handpick the sketches and further
group them to form three datasets based on their topology: (1)
OneComp – a single closed loop, (2) Donut – two loops with one in-
side the other, and (3) TwoComp – two separated loops. The datasets
contain 128, 25, and 23 shapes, respectively.
We show a representative set of results on all three grammars

for this task in Fig. 4. While the grammars span fundamentally
different design spaces of shapes, they all converge reliably under
the same SRD optimizer. In the Tree grammar, gradient-guided
rewrites insert, split, and occasionally retract branches until the
canopies cover the target silhouettes, and the rewrites are able to
distribute the branches organically. In the Union-Rect grammar,
while the target image contain curved regions that are difficult
to decompose into rectangular slabs, the rewrites spawns smaller
rectangles that approximate these curved edges. Finally, for the
Arc-Line grammar, despite the initial shape bounding a region with
disk topology, the rewrites are able to alter the topology to create
multiple connected components and extra boundaries.
In addition, we show results on morphing in Fig. 6 where we

alter the target image during optimization. Due to the reversible,
jump-continuous, and locally controllable rewrites (Section 3.2), the
SRD optimizer is able to continue the optimization towards the new
objective smoothly through deleting obsolete primitives, spawning
new ones, and continuously updating the parameters.

5.2 Score Distillation Sampling (SDS) Loss
With the ability to directly optimize shapes based on gradient infor-
mation, our algorithm can incorporate virtually any differentiable
objective into our framework. To this end, we test our framework on
Score Distillation Sampling (SDS) loss for text-to-shape generation.
The SDS loss converts the denoising-score of a pretrained diffusion
model into a gradient that pulls a parametrized geometry towards a
given prompt.
Fig. 5 displays a gallery of shapes optimized using SDS loss on

various text prompts. The optimized shapes are coherent with the
text prompts. For instance the prompt “astronaut” yields a shape
with a recognizable human and scattered rectangles that resemble
stars, while the prompt “flower” produces an organic blossom with
realistic petals and stem. The ability to add loops helps in materializ-
ing the eye in the “skull” and the horn in the “bull”. For Union-Rect,
the optimization utilizes the negative space to create the specular
shading in “bottle” and to provide visual separation in “car”. The

difference in style between these two grammars also hint at the
potential to control the characteristic of shapes via modifications of
the grammar rules.

5.3 Topology Optimization
We explore the use of our framework in topology optimization, an
engineering technique used to optimize structural integrity while
reducing weight. Traditional methods are often density-based and,
depending on the target fabrication technique, may require post-
processing to convert results into CAD formats. Our approach al-
lows direct optimization of this objective over a grammar-defined
shape space, producing structures that are optimized for perfor-
mance while remaining constrained to the primitives defined by the
grammar.
Our approach to topology optimization is inspired by level-set

methods—since the differentiable rasterizer produces a signed dis-
tance field from the shape grammar, they can be applied directly. We
follow the implementation from [Wei et al. 2018], but propagate the
gradient through our rasterizer instead of their level set parameters.

We evaluate two classic problems: the Cantilever beam, with the
left edge fixed and a downward force applied at the right midpoint,
and the MBB beam, with the bottom corners fixed in the 𝑦-direction
and a downward force at the top midpoint. Figure 7 shows Arc-
Line shape programs optimized for these objectives. These results
demonstrate that our framework can synthesize shape programs
for nontrivial objectives, enabling many applications.

6 Ablations and Comparisons

6.1 Properties of Shape Grammars
To study how different properties influences the optimization and
convergence, we experiment with six variations of Tree grammar
described in Table 2 (Tr-1–Tr-6). Notable differences from Tr-Full
are that here the rendered leaf sizes are not optimizable and the root
node is initialized at the bottommost white pixel of the target image.
The AddLeaf* and RemoveLeaf* denote the same operations without
𝜖-closeness check. We also refer readers to Fig. 8 for qualitative
results.
Every additional capability either improves or maintains perfor-

mance, corroborating the importance of the recommended prop-
erties. Our simplest grammar Tr-1, which models the L-system ,
do not satisfy any properties. The optimizer struggles to fill the
lower right region as it is bounded by the angle constraint. In Tr-2,
while the added Reversibility does not affect performance, it
allows shapes to simplify and contain fewer nodes. This property is
beneficial when doing morphing when targets have different area.
We provide Jump Continuity in Tr-3. The optimizer succeeds
in filling the region as taking small steps allows multiple nodes to
bend at a higher angle. This also shown by the better loss across
all datasets. In Tr-4, the ability to modify anywhere on the tree
grants us Local Geom. Control. In Fig. 8 (Tr-4), we can see that
branches are allowed to grow anywhere notably around the root
where they previously cannot because those nodes already have
two children. In Tr-5, the AddAnywhere operation allows the gram-
mar to discover disconnected component and fill the entire target
shape. This can also be seen in the significant improvements on Two

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Design for Descent: What Makes a Shape Grammar Easy to Optimize? • 7

Table 2. Optimization quality (PSNR) and simplicity (number of primitives)
using different grammar variations evaluated over OneComp (One), Donut
(Dnt.), and TwoComp (Two) datasets.

PSNR ↑ # Primitives ↓
Gr. Description One Dnt. Two One Dnt. Two

Tr-1 AddLeaf* 15.4 9.7 10.3 155 93 45
Tr-2 AddLeaf* + RemoveLeaf* 15.4 9.7 10.3 145 86 42
Tr-3 AddLeaf + RemoveLeaf 21.5 21.1 11.4 182 195 76
Tr-4 Tr-3 + RemoveBranch + Split 23.0 21.3 11.4 206 218 85
Tr-5 Tr-4 + AddAnywhere 23.2 21.0 14.6 197 208 121

Tr-F Full 22.0 21.7 22.6 246 274 212

AL-1 no AddLoop 44.1 11.4 20.9 9 6 10
AL-F Full 44.3 48.1 49.3 9 10 11

UR-1 no AddRect 26.3 26.7 20.3 11 13 9
UR-2 no AddHole 26.7 27.0 26.1 10 12 10
UR-F Full 27.6 26.6 26.9 11 14 11

dataset. Note that we violate Jump Continuity because we fix
the rendered leaf size. However, the optimization can still progress
because the objective improvement from the new node inside new
region exceeds the impediment from intermediate nodes.

We further show the effects of disabling LocalGeom. Control-
providing rewrites in Arc-Line (AL-1) and Union-Rect (UR-1 and UR-
2). These grammars show similar performance on OneComp dataset
as expected as they only contain a single component.While Arc-Line
without AddLoop (AL-1) struggles with the Donut dataset since it
cannot add an extra loop, removing AddHole from Union-Rect (UR-
2) does not impact the performance on Donut because the splits and
slight jittering causes the shape to break into multiple components.
For both grammars, without the ability to add component (AL-1
and UR-1), the shape can be get stuck if the current shape does not
intersect with the missing component.

6.2 Configurations of SRD
We now study the effects of the optimization when SRD only selects
only the best rewrite in each step (denoted as OneRewrite in Ta-
ble 2) and does not perform a continuous step to evaluate and rank
rewrites (NoStep). Theoretically, OneRewrite should perform simi-
larly but slower, and NoStep should prevent rewrites that exactly
preserve or worsen the objective from being selected. For trees, the
optimization progress is indeed much slower without much sacrifice
on performance with OneRewrite, however it stops early with NoS-
tep due to AddAnywhere being unable to land in the target region.
For Arc-Line, with OneRewrite, the progress are drastically slower
inducing our custom step size scheduler to reduce the step size
even further. With NoStep, the AddLoop helps in making progress
because it is not exact. For Union-Rect, these variations have little
impact on performance and time because AddHole is not exact and
Split introduce slight discrepancy around the cut edge. We refer
readers to Table 7 in supplemental for results without AddLoop-like
operations or step size scheduler.

6.3 MCMC comparison
We benchmark reversible-jump MCMC (RJMCMC) [Talton et al.
2011] against SRD for the Tree grammar. Since the method requires a

Table 3. Optimization quality (PSNR) and time (s) using different variations
of SRD evaluated over OneComp (One), Donut (Dnt.), and TwoComp (Two)
datasets.

PSNR ↑ Time ↓

Gr. Description One Dnt. Two One Dnt. Two

Tr-F NoStep 9.9 10.4 10.6 181 197 107
Tr-F OneRewrite 19.4 17.5 18.4 1047 981 662
Tr-F Full 22.0 21.7 22.6 385 437 291

AL-F NoStep 30.7 24.3 31.8 118 154 107
AL-F OneRewrite 40.0 19.1 24.0 90 126 102
AL-F Full 44.3 48.1 49.3 80 106 107

UR-F NoStep 25.1 24.8 24.7 85 89 57
UR-F OneRewrite 26.9 27.0 26.4 85 109 80
UR-F Full 27.6 26.6 26.9 88 106 75

context-free grammar to compute the jump probabilities efficiently,
we use a simple branching context-free L-system which generates
the same space of trees as the full version of our Tree grammar.
While RJMCMC employs jump moves and diffusion moves that
resamples derivation subtrees and their continuous parameters,
it is unable to leverage gradient information from the objective.
We note that the RJMCMC optimization maximizes the posterior
𝑝 (𝛿 | 𝐼 ∗) ∝ 𝐿(𝐼 ∗ | 𝛿)𝜋 (𝛿), where 𝛿 is the derivation tree, 𝐼 ∗ is
the target image, 𝐿 is the likelihood function, and 𝜋 (·) is the prior.
Maximizing this term does not explicitly encourage simplicity of
the derivation tree, thus we turn off the simplicity objective in our
optimization for this comparison.

������ �����������������
�� ���������
�������
��

Fig. 3. Comparison with RJMCMC. RJMCMC and Tr-1 operate on the same
grammar with only AddLeaf* and produce comparable results. Adding
rewrites according to our guidelines significantly improves the results.

We compare RJMCMC against Tr-1 and Tr-5 grammar without
simplicity weight. The PSNR are 15.3, 20.0, and 31.3; and the run
times are 219, 19, and 99 minutes, respectively. As shown in Fig. 3,
gradient guidance accelerates optimization and RJMCMC occasion-
ally struggles to ensure full coverage of the target. In addition,
despite turning off the simplicity objective, we are still able to find
a more parsimonious representation than RJMCMC.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

8 • Kodnongbua et al.

��� ����� ���

�
��
��

��
��
�

��
��
��
��

��
��

Fig. 4. Result of optimization towards a target image over tree grammar, grammar with rectangles, and grammar with connecting arcs and lines. The optimized
shape matches the target image while also maintaining simplicity objective.

�������

���������

������

�������

�������

����� �����

��
���

���������

�����

�������
��������
��

���
���

��
����

������

��������

���
���

�
�����

Fig. 5. Results of text-based optimization using Score Distillation Sampling (SDS) over grammars that (left) uses arcs and lines and (right) uses rectangles. The
optimized shapes are coherent with the text prompts showing the versatility of our framework on different objectives. See Fig. 10 and 11 in the supplemental
for additional results.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

Design for Descent: What Makes a Shape Grammar Easy to Optimize? • 9

������������������

Fig. 6. Progression of trees optimized towards changing target images. The tree is first optimized for ‘S’. The resulting tree is then optimized for ‘I’, and so on
to spell SIGGRAPH. Bottom row shows sequential progression from ‘G’ to ‘R’. The morphing ability shows our framework is less sensitive to initialization.

������������������

��������������
�����

����
�������

Fig. 7. Application of our framework for topology optimization over grammars that use arcs and lines. The Cantilever beam closely matches results from the
literature. The MBB beam produces a structurally sound solution that, while different from typical published results, reflects the fact that we did not constrain
the design to remain within the initial region.

����

������� ������ ������� ������� ������� �������

���� ���� ���� ���� ����

Fig. 8. Results using variation of tree grammars that are progressively conforming to our guidelines. Adding remove operation helps simplify the shape
(Tr-2). Small rewrites help reach hard-to-reach regions (Tr-3). The ability to modify anywhere on the tree helps regularized the optimized structure (Tr-4).
AddAnywhere helps discover disconnected regions (Tr-5). Tr-F is our full grammar with optimizable leaf sizes.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

10 • Kodnongbua et al.

7 Limitations and Future work
Hyperparameters. Our descent approach inherits common lim-

itations of gradient descent, such as sensitivity to step size and
regularity of the gradients. For now, we address this using grammar-
specific scaling factors and a step size scheduler. Future work could
adapt advanced optimizers like Adam [Kingma 2014], but one must
first determine how stateful optimizers (e.g., momentum) should be
updated after a rewrite.

Distributions of rewrites. Our current algorithm assumes each
rewrite type is sampled with roughly the same probability, and the
continuous parameters of rewrites (e.g., positions to AddHole) are
sampled uniformly randomly. Future work could tune this distribu-
tion based on the state of the shape and gradient information (e.g.,
through learning) to improve convergence speed.

Analysis. The fields of optimization and programming languages
offer rich foundations that we have only begun to tap into.While our
proposed properties are inspired by these theories and supported
by experiments, there remains significant opportunity for formal
analysis and deeper theoretical grounding.

Applications. On the application side, there are many domains
where applying these ideas would be valuable. In particular, ex-
tending our method to richer 3D grammars—such as constructive
solid geometry with boolean operations—is a promising direction.
A key step toward enabling this broader applicability is automating
grammar design. It would be interesting to build on work from
the programming languages community, such as rewrite rule infer-
ence [Nandi et al. 2021], to automatically discover additional rewrite
rules that help a grammar satisfy the properties needed for effective
optimization.

Continuous Relaxations. An intriguing direction for future work
is exploring fully continuous relaxations of discrete operations. Re-
cent work has shown that in certain cases, discrete operations can
indeed admit continuous relaxations—for example, Liu et al. [2024]
demonstrates a unified differentiable boolean operator using fuzzy
logic. While we have not explored this direction for general shape
grammar rewrites, it is possible that some discrete operations could
be similarly relaxed. This would align well with the spirit of our
jump continuity property and could further bridge the discrete-
continuous divide in shape grammars, though it is unlikely that
discrete rewrites can be avoided entirely in general.

8 Conclusion
This work introduces a new perspective on shape program syn-
thesis based on gradient descent. Through example applications
and ablations, we show that gradient-based optimization can be
effectively applied to shape grammars, and that grammar design
plays a critical role in synthesis quality. It also opens a new direction
for shape grammar research—bridging insights from optimization,
programming languages, and graphics. From formalizing the the-
oretical foundations to developing better algorithms and extend-
ing to more complex domains, this space is rich with opportunity.
Structure-aware shape processing is a cornerstone of computer

graphics [Mitra et al. 2014], and grammars are among its most pow-
erful representational tools. Enabling efficient optimization over
them has the potential to unlock a wide range of applications in
design, fabrication, and beyond.

Acknowledgments
This work is supported by the National Science Foundation under
Grant No. 2212049 and 2219864 and the Sloan Research Fellowship.
GPU compute is provided by NVIDIA Academic Grant Program.

References
Daniel G Aliaga, İlke Demir, Bedrich Benes, andMichaelWand. 2016. Inverse procedural

modeling of 3d models for virtual worlds. In ACM SIGGRAPH 2016 Courses. 1–316.
Amir Barda, Guy Tevet, Adriana Schulz, and Amit Haim Bermano. 2023. Generative

Design of Sheet Metal Structures. ACM Transactions on Graphics (TOG) 42, 4 (2023),
1–13.

Xuran Cai, Amir Kafshdar Goharshady, S Hitarth, and Chun Kit Lam. 2025. Faster
Chaitin-like Register Allocation via Grammatical Decompositions of Control-Flow
Graphs. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1. 463–477.

David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and
Nadia Polikarpova. 2023. babble: Learning better abstractions with e-graphs and
anti-unification. Proceedings of the ACM on Programming Languages 7, POPL (2023),
396–424.

D. Cascaval, M. Shalah, P. Quinn, R. Bodik, M. Agrawala, and A. Schulz. 2022. Differen-
tiable 3D CAD Programs for Bidirectional Editing. Computer Graphics Forum 41,
2 (2022), 309–323. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14476
doi:10.1111/cgf.14476

Ilke Demir and Daniel G Aliaga. 2018. Guided proceduralization: Optimizing geometry
processing and grammar extraction for architectural models. Computers & Graphics
74 (2018), 257–267.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. Inversecsg: Automatic
conversion of 3d models to csg trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–16.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018. Learning
to infer graphics programs from hand-drawn images. Advances in neural information
processing systems 31 (2018).

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore
Anaya Pozo, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. 2023.
DreamCoder: growing generalizable, interpretable knowledge with wake–sleep
Bayesian program learning. Philosophical Transactions of the Royal Society A 381,
2251 (2023), 20220050.

Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani
Lischinski, and Hui Huang. 2020b. Inverse procedural modeling of branching
structures by inferring l-systems. ACM Transactions on Graphics (TOG) 39, 5 (2020),
1–13.

Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020a. A bayesian inference
framework for procedural material parameter estimation. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 255–266.

Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural tangent kernel:
Convergence and generalization in neural networks. Advances in neural information
processing systems 31 (2018).

R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. 2023. Shapecoder:
Discovering abstractions for visual programs from unstructured primitives. ACM
Transactions on Graphics (TOG) 42, 4 (2023), 1–17.

Hamed Karimi, Julie Nutini, and Mark Schmidt. 2016. Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition. In Joint
European conference on machine learning and knowledge discovery in databases.
Springer, 795–811.

Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

Vojtěch Krs, Radomír Měch, Mathieu Gaillard, Nathan Carr, and Bedrich Benes. 2021.
PICO: Procedural Iterative Constrained Optimizer for Geometric Modeling. IEEE
Transactions on Visualization and Computer Graphics 27, 10 (Oct. 2021), 3968–3981.
doi:10.1109/TVCG.2020.2995556

Krzysztof Kurdyka. 1998. On gradients of functions definable in o-minimal structures.
In Annales de l’institut Fourier, Vol. 48. 769–783.

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting 3D
furniture models to fabricatable parts and connectors. ACM Transactions on Graphics
(TOG) 30, 4 (2011), 1–6.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14476
https://doi.org/10.1111/cgf.14476
https://doi.org/10.1109/TVCG.2020.2995556

Design for Descent: What Makes a Shape Grammar Easy to Optimize? • 11

Hsueh-Ti Derek Liu, Maneesh Agrawala, Cem Yuksel, Tim Omernick, Vinith Misra,
Stefano Corazza, Morgan Mcguire, and Victor Zordan. 2024. A Unified Differentiable
Boolean Operator with Fuzzy Logic. In ACM SIGGRAPH 2024 Conference Papers
(Denver, CO, USA) (SIGGRAPH ’24). Association for Computing Machinery, New
York, NY, USA, Article 109. doi:10.1145/3641519.3657484

Paul Merrell. 2023. Example-based procedural modeling using graph grammars. ACM
Transactions on Graphics (TOG) 42, 4 (2023), 1–16.

Élie Michel and Tamy Boubekeur. 2021. DAG amendment for inverse control of
parametric shapes. ACM Trans. Graph. 40, 4, Article 173 (July 2021), 14 pages.
doi:10.1145/3450626.3459823

Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing
Huang. 2014. Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses.
1–21.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural modeling of buildings. In ACM SIGGRAPH 2006 Papers. 614–623.

Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam
Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock. 2021. Rewrite
rule inference using equality saturation. Proceedings of the ACM on Programming
Languages 5, OOPSLA (2021), 1–28.

Aleksander Plocharski, Jan Swidzinski, Joanna Porter-Sobieraj, and Przemyslaw Mu-
sialski. 2024. FaçAID: A Transformer Model for Neuro-Symbolic Facade Recon-
struction. In SIGGRAPH Asia 2024 Conference Papers (Tokyo, Japan) (SA ’24). As-
sociation for Computing Machinery, New York, NY, USA, Article 123, 11 pages.
doi:10.1145/3680528.3687657

Przemyslaw Prusinkiewicz. 1986. Graphical applications of L-systems. In Proceedings
of graphics interface, Vol. 86. 247–253.

Daniel Ritchie, BenMildenhall, Noah D. Goodman, and Pat Hanrahan. 2015. Controlling
procedural modeling programs with stochastically-ordered sequential Monte Carlo.
ACM Trans. Graph. 34, 4, Article 105 (July 2015), 11 pages. doi:10.1145/2766895

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah Goodman. 2016. Neurally-
Guided Procedural Models: Amortized Inference for Procedural Graphics Programs
using Neural Networks. In Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2016/file/
40008b9a5380fcacce3976bf7c08af5b-Paper.pdf

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and Tom
Goldstein. 2020. The impact of neural network overparameterization on gradient
confusion and stochastic gradient descent. In International conference on machine
learning. PMLR, 8469–8479.

Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. 2020. SketchGraphs: A
Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design.
In ICML 2020 Workshop on Object-Oriented Learning.

Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A survey on
procedural modelling for virtual worlds. In Computer graphics forum, Vol. 33. Wiley
Online Library, 31–50.

George Nicholas Stiny. 1975. Pictorial and formal aspects of shape and shape grammars
and aesthetic systems. University of California, Los Angeles.

Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír
Měch. 2012. Learning design patterns with bayesian grammar induction. In Proceed-
ings of the 25th annual ACM symposium on User interface software and technology.
63–74.

Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Mech, and Vladlen Koltun.
2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 2 (2011), 11–1.

Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul
Waddell. 2012. Inverse design of urban procedural models. ACM Trans. Graph. 31, 6,
Article 168 (Nov. 2012), 11 pages. doi:10.1145/2366145.2366187

Guan Wang, Hamid Laga, Ning Xie, Jinyuan Jia, and Hedi Tabia. 2018. The Shape Space
of 3D Botanical Tree Models. ACM Trans. Graph. 37, 1, Article 7 (Jan. 2018), 18 pages.
doi:10.1145/3144456

Peng Wei, Zuyu Li, Xueping Li, and Michael Yu Wang. 2018. An 88-line MATLAB
code for the parameterized level set method based topology optimization using
radial basis functions. Structural and Multidisciplinary Optimization 58, 2 (aug 2018),
831–849. doi:10.1007/s00158-018-1904-8

Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant
architecture. ACM Transactions on Graphics (TOG) 22, 3 (2003), 669–677.

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka.
2013. Inverse procedural modeling of facade layouts. arXiv preprint arXiv:1308.0419
(2013).

J Wyse, N Friel, and M Girolami. 2012. Reversible jump Riemann Manifold Hamiltonian
Monte Carlo. (2012).

Haocheng Yuan, Adrien Bousseau, Hao Pan, Chengquan Zhang, Niloy J. Mitra, and
Changjian Li. 2024. DiffCSG: Differentiable CSG via Rasterization. In Proceedings
of ACM SIGGRAPH Asia (Conference track). ACM. http://www-sop.inria.fr/reves/
Basilic/2024/YBPZML24

Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg,
Daniela Rus, and Wojciech Matusik. 2020. Robogrammar: graph grammar for

terrain-optimized robot design. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1–16.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://doi.org/10.1145/3641519.3657484
https://doi.org/10.1145/3450626.3459823
https://doi.org/10.1145/3680528.3687657
https://doi.org/10.1145/2766895
https://proceedings.neurips.cc/paper_files/paper/2016/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://doi.org/10.1145/2366145.2366187
https://doi.org/10.1145/3144456
https://doi.org/10.1007/s00158-018-1904-8
http://www-sop.inria.fr/reves/Basilic/2024/YBPZML24
http://www-sop.inria.fr/reves/Basilic/2024/YBPZML24

	Abstract
	1 Introduction
	2 Related Work
	3 The Framework
	3.1 Problem Setup
	3.2 Designing Optimization-Friendly Grammars
	3.3 Optimization Over Grammar Space

	4 Case Study Grammars
	4.1 Tree Grammar
	4.2 Arc–Line (AL) Grammar
	4.3 Union-Rect (UR) Grammar

	5 Results and Applications
	5.1 Optimization Towards A Target Image
	5.2 Score Distillation Sampling (SDS) Loss
	5.3 Topology Optimization

	6 Ablations and Comparisons
	6.1 Properties of Shape Grammars
	6.2 Configurations of SRD
	6.3 MCMC comparison

	7 Limitations and Future work
	8 Conclusion
	Acknowledgments
	References

