
Polynomial-Time Program Equivalence for Machine Knitting

NATHAN HURTIG, University of Washington, USA
JENNY HAN LIN, University of Utah, USA
THOMAS S. PRICE, Carnegie Mellon University, USA
ADRIANA SCHULZ, University of Washington, USA
JAMES MCCANN, Carnegie Mellon University, USA
GILBERT LOUIS BERNSTEIN, University of Washington, USA

We present an algorithm that canonicalizes the algebraic representations of the topological semantics of
machine knitting programs. Machine knitting is a staple technology of modern textile production where
hundreds of mechanical needles are manipulated to form yarn into interlocking loop structures. Our semantics
are defined using a variant of a monoidal category, and they closely correspond to string diagrams. We
formulate our canonicalization as an Abstract Rewriting System (ARS) over words in our category, and prove
that our algorithm is correct and runs in polynomial time.

CCS Concepts: • Software and its engineering→ Domain specific languages; Visual languages; Semantics; •
Theory of computation→ Categorical semantics; Program analysis; •Mathematics of computing→
Topology.

Additional Key Words and Phrases: machine knitting, string diagrams, program equivalence, canonicalization,
normal forms, monoidal categories, fenced tangles, braids.

ACM Reference Format:
Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bern-
stein. 2025. Polynomial-Time Program Equivalence for Machine Knitting. Proc. ACM Program. Lang. 9, ICFP,
Article 248 (August 2025), 29 pages. https://doi.org/10.1145/3747517

1 Introduction

Machine knitting is a powerful textile fabrication technique. Computer-controlled knittingmachines
can form yarns into complex 3D textile shapes with diverse surface textures, thicknesses, colors,
and mechanical properties – all under programmatic control. These machines are widely deployed
and account for 20–40% of existing textile artifact production. This includes everyday garments
like socks, gloves, and sweaters; medical devices like compression socks and respiration sensors;
and more surprising applications like composite preforms for wind turbine blades, automobile
seat covers, and formwork for cast concrete architecture. However, despite the widespread use
of knitting machines, their full potential is not currently exploited because knitting machine
programming pipelines are underdeveloped.
Knitting machines are controlled by low-level programs that specify machine actions. Knit

programmers must explicitly translate their desired knitted object into a series of steps that the

Authors’ Contact Information: Nathan Hurtig, University of Washington, Seattle, USA, hurtig@cs.washington.edu; Jenny
Han Lin, University of Utah, Salt Lake City, USA, jenny.h.lin@utah.edu; Thomas S. Price, Carnegie Mellon University, Pitts-
burgh, USA, tomprice@andrew.cmu.edu; Adriana Schulz, University of Washington, Seattle, USA, adriana@cs.washington.
edu; James McCann, Carnegie Mellon University, Pittsburgh, USA, jmccann@cs.cmu.edu; Gilbert Louis Bernstein, University
of Washington, Seattle, USA, gilbo@cs.washington.edu.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/8-ART248
https://doi.org/10.1145/3747517

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

https://orcid.org/0000-0002-0988-1401
https://orcid.org/0009-0000-8618-0740
https://orcid.org/0000-0001-7356-2109
https://orcid.org/0000-0002-2464-0876
https://orcid.org/0000-0002-4231-4142
https://orcid.org/0000-0002-3016-1169
https://doi.org/10.1145/3747517
https://orcid.org/0000-0002-0988-1401
https://orcid.org/0009-0000-8618-0740
https://orcid.org/0009-0000-8618-0740
https://orcid.org/0000-0001-7356-2109
https://orcid.org/0000-0002-2464-0876
https://orcid.org/0000-0002-4231-4142
https://orcid.org/0000-0002-3016-1169
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3747517

248:2 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

machine can perform to make it, and then express these steps in an appropriate language – often
using proprietary, machine-specific design tools [14, 23, 25].1 The knitout language [16] is a cross-
machine low-level language used by some researchers and hobbyists which provides a more
machine-neutral view of knit programming. Knitout does not include control flow operations,
and each of its operations refers to some movement of a piece of the knitting machine: it is
analogous to G-code in 3D printers, or assembly in traditional computing. However, all low-level
knit programming – regardless of the tool – is error-prone, as it is difficult for programmers to
correctly express the final topology and shape of their intended object using low-level machine
code. The runtime efficiency of machine knitting and robustness to mechanical errors also suffer.

c loop

loop c

(a) Loop on f.2

c loop

loop c

(b) Loop on b.2

Fig. 1. The result of the knitout instruction miss
+ f.2 𝑐 depends on the machine state. If 𝑐 crosses

a loop, the resulting topology depends onwhether

that loop is held on a front needle (a) or back

needle (b).

For instance, Figure 1 illustrates a key subtlety in
writing low-level machine knitting code. The knitout
operation miss + f.2 𝑐 instructs the machine to
move yarn carrier 𝑐 to a position just right of needle
f.2, effectively leaving a trail of yarn between the
carrier’s current position and the new location. The
yarn structure created by that operation depends on
the state of loops of yarn held on the machine, which
is in turn determined by earlier code. This example
shows how machine knitting differs from traditional
computing contexts: as strands and loops (analo-
gous to values) move between needles (analogous to
registers), how they move relative to other in-flight
values is as important as where they arrive. This re-
quires programmers to maintain a virtual model of
the machine’s state as they program, a task similar
to requiring traditional programmers to maintain a
virtual model of register assignments.

Recently, formal semantics were proposed for knitout [12] as a way to alleviate some of these
concerns. Denotational semantics allow the communication and analysis of a knitting program’s
result rather than the specific actions the program specifies that a knitting machine should take to
get there. When a creator designs a 3D printed object, they rarely write G-code to control the 3D
printer directly. Instead, creators use Computer-Aided Design (CAD) tools to specify 3D objects
in a fabrication-oblivious format. Then, Computer-Aided Manufacturing (CAM) tools, like slicers,
compile the design to G-code. Machine knitting semantics enable analogous design tools. They
also enable verification of compilers and optimization tools.
The semantics proposed for knitout by Lin et al. [12] are unique. In traditional programming

languages, programs represent computations. In a simplified sense, they are functions that map
inputs to outputs. In contrast, knitout programs represent knitted objects – topologically complex
structures made from braiding (crossing strands over strands) and stitches (passing loops through
loops). The proposed knitout semantics are therefore topological: they translate knitout code to
tangle diagrams, considered up to equivalence by ambient isotopy2. Lin et al. [12] prove some basic
rewrites of knitout programs preserve semantic equivalence. However, their described equations
are not complete: they do not capture all topological equivalences implied by their semantics.

1These tools also offer high-level templates and wizards to create common shapes, but these templates support only a small
portion of the expressiveness of the machines.
2Ambient isotopies are a technical formulation of continuous deformations of knots, without allowing one to break or cut
strands, nor pass strands through other strands.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:3

In this paper we answer affirmatively the question, “is it possible to efficiently decide the equiva-
lence of two knitting machine programs?” by presenting a new polynomial-time canonicalization

algorithm in a suitable semantic domain. This result is somewhat surprising, given known results
in algorithmic knot theory. For instance, the unknotting problem (detecting whether a diagram is
knotted or not) is known to be in both NP [7] and co-NP [11], but has no known polynomial-time
algorithm. Thus, it is one notable candidate for an NP-intermediate problem. On the other hand,
equivalence of braids (via canonicalization) can be computed in 𝑂 (𝑏2𝑛 log(𝑛)) [4] for braids with 𝑏
crossings on 𝑛 strands. We achieve a polynomial-time result by leveraging structure in machine
knitted objects that is not present in general knot theory.

We present an algebraic form of Lin et al. [12]’s semantics for knitout using a suitable monoidal
category, similar to Joyal and Street [10]. We then formalize our algorithm as an Abstract Rewriting
System (ARS) over words (well-formed sequences of generating morphisms) in this category. We
show that this canonicalization is both sound and complete. Because our algorithm is theoretically
efficient and based on canonicalization, we anticipate that it will enable other efficient and complete
analyses for knitting machine programs, inform the design of intermediate representations, and
directly support equivalence checking for translation validation, debugging of compilers, and novel
support in design tools.
Similar to efficient algorithms for braids, our algorithm exploits the fact that machine-knitted

objects are topologically progressive (sometimes called monotonic): strands always flow from past
stitches to future stitches, and do not turn back to braid with previous structures. This mirrors the
observation of Lin et al. [13] that machine-knittable structures are always – in their terminology –
“upward.”

We identify two contributions of our paper:

• We develop a topologically-inspired algebraic semantics for machine knitting programs in
Section 3. We show how to translate knitout code to those semantics in Section 8.
• We describe a polynomial-time canonicalization algorithm of those semantics in Sections 4,
5, and 6. We provide an overview of why the algorithm is correct in Section 7, leaving formal
treatment to our supplementary material.

2 Overview

view of front bed
during knitting

Carrier Tracks

Yarn Carriers Carriage Front Bed

Needle

Fig. 2. A knitting machine forms a fabric from loops of yarn. The

loops are formed and held by needles arranged in two parallel

beds. Yarn is brought to the needles by yarn carriers. Figure

from Lin et al. 2023 [12], based on Sanchez et al. 2023 [21], used

with permission.

The goal of this paper is to efficiently
check whether two machine knitting
programs will create the same knitted
object. We accomplish this by map-
ping knitting programs to diagrams
like the one shown in Figure 3d, and
then checking whether the diagrams
are equivalent. More specifically, we
present a canonicalization algorithm
that rewrites two diagrams into the
same form if and only if they are
equivalent. Prior work by Joyal and
Street [10] implies the connection be-
tween our diagrams, category theory,
and the topology of yarns. While the details of machine knitting are necessary to explain our
mapping, the core canonicalization algorithm can be appreciated with minimal knitting knowledge.
We leave a more detailed definition of the knitout language to Section 8 and instead begin by

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:4 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

providing the high-level intuition required to understand the link between machine knitting and
algebraic string diagrams. For a more in-depth explanation of machine knitting and its connection
to mathematics, see Lin et al. [12].

1 in - f.0 1;

2 tuck + f.0 3.0 (1,1.0);

3 tuck + b.1 3.0 (1,1.0);

4 tuck + f.2 3.0 (1,1.0);

5 miss - f.2 1;

6 knit - b.1 3.0 (1,2.0);

7 knit - f.0 3.0 (1,1.0);

8 knit + f.0 3.0 (1,1.0);

9 knit + b.1 3.0 (1,1.0);

10 knit + f.2 3.0 (1,1.0);

(a) Knitout code (b) Output knit object

1
2

3

4
5

6

7

8

9

10

(c) Sequential orientation

1
2

3

4

5

6

7

8

9

10

▶

▶

▶

◀

◁

▶

▷

▶

(d) Algebraic diagram

Fig. 3. From left to right: a piece of formal knitout code, the knitted object it represents, that same object

organized by execution order, and a diagram representing our algebraic semantics of the code. Figures 3c, 3d

are labeled with the line numbers from Figure 3a.

Knitout is a machine knitting language that describes the actions performed by a v-bed knitting
machine (Figure 2). These machines use hook-shaped needles arranged in rows called beds to
manipulate yarn delivered by carriers into interlocking loops. In this paper we use formal knitout,
a variant of knitout.3 The formal knitout operations are described in Table 1.
To give a more in-depth intuition for formal knitout, we describe the execution of the snippet

of formal knitout code presented in Figure 3a. It begins by bringing in yarn carrier 1 to the left
of needle 0 in the front bed (i.e. - f.0). From there, three tuck operations use carrier 1 to drape
loops over needles f.0, b.1, and f.2. After repositioning the carrier with a miss operation, five knit
operations are used to pull yarn 1 through existing loops on corresponding needles. Executing this
snippet on an empty machine produces the object shown in Figure 3b.

While the result of this relatively simple program was drawn manually, the topology for larger
programs quickly grows in complexity. Prior work by Lin et al. [12] provides a denotational
semantics mapping knitout to topological diagrams (Figure 3c). In addition to the yarn topology,
these diagrams introduce fenced regions (drawn as dashed boxes) that surround loop entanglements
and prevent uncontrolled unraveling. This means that salient transformations and equalities
between machine knitting programs happen outside the dashed boxes. The yarn topology in
Figure 3c is a vertically stretched version of Figure 3b, where the diagram can be partitioned into
slices with at most a single box per slice. Each of the eight dashed boxes from bottom to top in the
diagram correspond exactly with the eight tuck and knit operations from top to bottom in the
program.4
The contents of each box come from a countable set of topologies determined by the corre-

sponding operation; for example, see how the internals of the first three boxes (labeled 2, 3, 4)
corresponding to the tuck operations are identical, and how the fourth box (6) can be rotated
3Formal knitout is easier to reason about and manipulate, but more syntactically verbose than knitout. There is a translator
from knitout to formal knitout [12], so our results extend to knitout.
4The crossings between the third and fourth dashed boxes from the bottom correspond to the miss operation.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:5

Table 1. The nine formal knitout operations, excluding nop. Parameters 𝑙 and 𝑠 control metric properties (e.g.,

length) and are irrelevant to topology.

Operation Parameters Description
in 𝑑𝑖𝑟 𝑛.𝑥 𝑦 Activates yarn carrier 𝑦 and moves it to the 𝑑𝑖𝑟 side of

needle 𝑛.𝑥 .
out 𝑑𝑖𝑟 𝑛.𝑥 𝑦 Deactivates yarn carrier 𝑦 by cutting the yarn at the 𝑑𝑖𝑟

side of needle 𝑛.𝑥 .
miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦 Moves yarn carrier 𝑦 to the 𝑑𝑖𝑟 side of needle 𝑛.𝑥 .
tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠) Drapes a loop formed in direction 𝑑𝑖𝑟 over needle 𝑛.𝑥

using the yarn from carrier 𝑦.
knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠 Forms new loops in direction𝑑𝑖𝑟 by pulling the yarns from

carrier set 𝑦𝑎𝑟𝑛𝑠 through the existing loops on needle 𝑛.𝑥 .
The existing loops are dropped off the needle.

split 𝑑𝑖𝑟 𝑛.𝑥 𝑛′ .𝑥 ′ 𝑙 𝑦𝑎𝑟𝑛𝑠 Forms new loops in direction𝑑𝑖𝑟 by pulling the yarns from
carrier set 𝑦𝑎𝑟𝑛𝑠 through the existing loops on needle 𝑛.𝑥 .
The existing loops are moved to needle 𝑛′ .𝑥 ′.

drop 𝑛.𝑥 Drops all loops on 𝑛.𝑥 .
rack 𝑟 Aligns front and back bed such that f.𝑥 is across from

b.(𝑥 − 𝑟).
xfer 𝑛.𝑥 𝑛′ .𝑥 ′ Moves loops from needle 𝑛.𝑥 to needle 𝑛′ .𝑥 ′.

to produce the sixth box (8). We further simplify these diagrams by abstracting away the exact
topology inside boxes to produce Figure 3d, again with eight boxes corresponding to the tuck and
knit operations in order of execution. We preserve topological information of the internals of
boxes with annotations. We use triangles such as ▶ in our diagrams, where the direction of the
triangle encodes the direction of carrier yarn movement, and the fill categorizes its symmetry: gray
triangles ▶ are used for rotationally symmetric (antichiral) tuck boxes, while filled ▶ and unfilled
▷ triangles represent boxes of different chiralities from knit and split.

Using the link between algebraic string diagrams and category theory, we present an algorithm
that canonicalizes our knit diagrams in polynomial time. This in turn means we can decide equiv-
alence for knitout programs in polynomial time. Figure 4 shows an example of our algorithm in
action.5 It flips boxes over, drags yarns around them, and swaps the vertical order of boxes to
achieve a canonical form. Our algorithm runs in three stages:
(1) Layer (Section 5) runs from top to bottom, rotating and horizontally shifting each box to

cancel out specific yarn crossings above the box.
(2) Swap (Section 6) swaps the boxes’ vertical orders to achieve a canonical order. This is

analogous to reordering operations in the knitout program.
(3) Braid (Section 4) simplifies the yarn crossings between boxes.

3 Semantic Domain

In this section, we define the categorical semantics that represent knitout. Our semantics are inspired
by Joyal and Street [10], who formalized the connections between the topology of diagrams and
certain monoidal categories that we use. Readers interested in a more complete description of the
connections between monoidal categories and string diagrams should see Selinger [22].
5Machine knitting can use multiple colors of yarn in an object to achieve colored designs. In this paper, we color yarns
solely as a visual aid; the colors of yarns in diagrams do not correspond with the true colors in physical objects.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:6 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

J

I

I

J

I

J

J

J

J

I

J

J

I

J

J

I

J

J

Layer Layer

Swap Braid

Layer

Fig. 4. An example of our canonicalization algorithm. It runs in three stages: Layer, Swap, and Braid.

Figure 5 summarizes the diagram rewrites that our algorithm canonicalizes.6 All of these diagram
rewrites represent physical continuous deformations in 3D space. We read and write each of our
diagrams from bottom to top. Each of these diagram rewrites corresponds to some axiom or property
of our final algebraic representation. Rules B1, B2, and B3 are analogous to the presentation of
the braid group. Rules L1, L3, B1, and B3 are analogous to the four rewrites presented in Lin et
al. [12]. Because we impose a grid-like ordering on boxes and strands, we include rules L2, M1 and
B2 beyond the four of Lin et al. to capture unrelated subdiagrams shifting past each other.

We organize this section starting with the basics of categories, building up algebraic assumptions
and structure. With each new assumption, we list the diagram rewrites that the assumption implies,
and define how we draw diagrams for the new structure. Subsection 3.1 reviews the theory and
definitions from Joyal and Street [10], which is sufficient for all the diagram rewrites in Figure 5
save L3. Subsection 3.2 defines the twisted involutive monoidal category [5], giving us L3. Finally,
Subsection 3.3 details the specific category K whose words we canonicalize.
6Some readers may find our presentation of L1, L2, and L3 awkward, especially L2. Indeed, instead of braids above and
below the box canceling in L2, we could have defined L2 to be a braid moving past an unrelated box, similar to B2 moving
unrelated braids past each other. We have chosen to define L1, L2, and L3 as introducing “opposite” crossings above and
below a box to align with our algorithm and proof.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:7

I = I

(a) L1

I = I

(b) L2

I = J

(c) L3

I

I =
I

I

(d)M1

=
(e) B1

=
(f) B2

=
(g) B3

Fig. 5. Diagrammatic equivalence rules. The L1, L2, and L3 moves correspond to our first step Layer, M1
corresponds to Swap, and B1, B2, B3 correspond to Braid. Our canonicalization algorithm rewrites two words

𝑋1, 𝑋2 to a shared canonical form if and only if they can be rewritten into each other with these seven moves.

3.1 Prior Definitions

Categories. A category C has a collection of objects C0 (which we denote with uppercase let-
ters) and a collection of morphisms C1 (denoted with lowercase letters and Greek letters). Every
morphism 𝑥 ∈ C1 has a domain 𝐴 ∈ C0 and codomain 𝐵 ∈ C0, and is denoted 𝑥 : 𝐴→ 𝐵. In our
diagram algebra, we draw arbitrary morphisms as boxes, and objects as strands connecting them,
with the domain object flowing in from below the box and the codomain flowing out above the
box. For every object in 𝐴 ∈ C0, there is an identity morphism id𝐴 : 𝐴 → 𝐴 with the expected
properties of an identity; we draw identity morphisms as straight strands. Morphisms are composed
with the ; operator to form new morphisms, but their objects must align: for any 𝑥 : 𝐴→ 𝐵 and
𝑦 : 𝐵 → 𝐶, 𝑥 ;𝑦 : 𝐴 → 𝐶 is a morphism in C1 as well. Note that the composition order of ; is
the opposite of the composition operator ◦.7 In our diagram algebra, we interpret 𝑥 ;𝑦 as vertical
concatenation of 𝑥 below 𝑦, connecting 𝑥 ’s output strands to 𝑦’s inputs. When composing many
morphisms with product notation, we also use ;’s diagrammatic order:

∏3
𝑖=1 𝑓𝑖 := 𝑓1; 𝑓2; 𝑓3 .

Categories additionally have commutative diagrams: statements of equivalence between specific
sequences of morphisms. In this paper, we encode the commutative diagrams of our category as the
diagrammatic equivalences in Figure 5. Our main contribution is a solution to the word problem:
given two sequences of well-formed morphisms called words (represented by diagrams), can we
rewrite one word into the other using the commutative diagrams?

For categories with only one object, composition is defined between all morphisms. These one-
object categories are called monoids. Morphisms are not necessarily invertible; when they are, we
call them isomorphisms. A group is a monoid in which all morphisms are isomorphisms. We can
generalize this notion to a groupoid, relaxing the single-object requirement for groups and allowing
any number of objects in the category. Equivalently, a groupoid could be defined as a category
with the restriction that all morphisms are isomorphisms. A functor is a structure-preserving
map between categories that maps objects to objects, morphisms to morphisms, and respects
composition and commutative diagrams. Functors are analogous to group homomorphisms.

7We use ; to align with the order of composition in the Artin braid group [18] and programming languages such as knitout.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:8 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

Monoidal Categories. A strict8 monoidal category C is a category equipped with an operator
⊗ : C × C → C, which we interpret as horizontal concatenation of diagrams. For objects 𝐴, 𝐵 ∈ C0,
𝐴 ⊗ 𝐵 is drawn as the objects 𝐴, 𝐵 next to each other and is itself an object in C. The objects of
a strict monoidal category form a monoid, from which the monoidal category draws its name.
Similarly, for morphisms 𝑥 : 𝐴 → 𝐵 and 𝑦 : 𝐶 → 𝐷, 𝑥 ⊗ 𝑦 : 𝐴 ⊗ 𝐶 → 𝐵 ⊗ 𝐷 is a morphism in C,
drawn as the diagram for 𝑥 to the left of the diagram for 𝑦.

In every monoidal category, there is a commutative diagram for morphisms 𝑎, 𝑏, 𝑐, 𝑑 such that
(𝑎 ⊗ 𝑏); (𝑐 ⊗ 𝑑) = (𝑎; 𝑐) ⊗ (𝑏;𝑑)

whenever compositions are well-defined.9 Together with the properties of id morphisms, this
allows unrelated morphisms to shift past each other as in diagrams L2, M1, and B2 in Figure 5.

Braided Monoidal Categories. A strict braided monoidal category C is a strict monoidal category
with isomorphisms 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴 for every pair of objects. We draw 𝜎𝐴,𝐵 as 𝐴 crossing
over 𝐵 from the left. Because 𝜎𝐴,𝐵 is an isomorphism, it is invertible, and we denote its inverse as
𝜎−1
𝐴,𝐵

, and draw it as 𝐵 crossing over 𝐴 from the right – see Figure 6a. Note that unlike the case of
symmetric monoidal categories, 𝜎𝐵,𝐴 is not necessarily the inverse of 𝜎𝐴,𝐵, as their composition
represents a full rotation of 𝐴 around 𝐵 – even though the objects end up in the same spots they
started, the crossings do not cancel out, as in Figure 6b. There are additional conditions imposed on
𝜎𝐴,𝐵, but we omit them for brevity. In summary, it must obey the diagrams B3 and L1 in Figure 5;
B1 is supplied by 𝜎𝐴,𝐵 ’s invertibility.

A B

A B

(a) 𝜎𝐴,𝐵 ;𝜎−1𝐴,𝐵
= id𝐴⊗𝐵

A B

A B

(b) 𝜎𝐴,𝐵 ;𝜎𝐵,𝐴
A B

A B

(c) 𝜃𝐴⊗𝐵

A B

B A

(d) Δ𝐴⊗𝐵

Fig. 6. Various morphisms in braided (6a, 6b), balanced (6c), and twisted involutive monoidal categories (6d).

Balanced Monoidal Categories. A strict balanced monoidal category C is a strict braided monoidal
category equipped with some balance isomorphism 𝜃𝐴 : 𝐴→ 𝐴 that performs a 360◦ rotation on
some object 𝐴 – see Figure 6c. Typically, balanced monoidal categories are drawn with framed
strands (ribbons) so rotations can be seen. In knitting, rotating a yarn has no discernible effect in
a knitted object, so we do not draw strands as framed in our later diagrams. The balance must
respect the braiding 𝜎 so that the balance on some composite object 𝐴 ⊗ 𝐵 is the same as braiding
𝐴 over 𝐵, the balance on both 𝐴 and 𝐵 independently, and then braiding 𝐵 over 𝐴. Equationally,
𝜃𝐴⊗𝐵 = 𝜎𝐴,𝐵 ; (𝜃𝐵 ⊗ 𝜃𝐴);𝜎𝐵,𝐴 . Additionally, the balance must be a natural isomorphism. This means
it can “commute with” morphisms, so for any 𝑥 : 𝐴 → 𝐵, we have 𝜃−1

𝐴
;𝑥 ;𝜃𝐵 = 𝑥 . This property

implies that the diagrams in Figures 7a and 7b are equivalent: one can be rewritten into the other
via commutative diagrams. However, a balance is not enough for L3 – a balance is a 360◦ rotation,
and L3 encodes rotations of 180◦. Our next subsection introduces a twist morphism, visualized in
Figure 7c.
8In this paper, we only use strict categories for ease in definitions. Non-strict variants have additional structure, but
coherence theorems state that every non-strict category is equivalent to a strict one.
9Note that in our diagram algebra, we draw both terms in (𝑎 ⊗ 𝑏) ; (𝑐 ⊗ 𝑑) = (𝑎;𝑐) ⊗ (𝑏;𝑑) identically – the algebraic
representations describe the same diagram in row-major order and column-major order, respectively.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:9

I

(a) Identity

I

(b) Balance

J

(c) Twist

Fig. 7. Various rotations on a box. Figure 7a shows a box that has not been rotated, Figure 7b shows the same

box after a balance, and Figure 7c shows the original box after a twist. Arrows denote the direction and extent

of rotation for each twist. Joyal and Street [10]’s balanced monoidal categories provide a 360
◦
rotation, but

not 180
◦
.

3.2 Twisted Involutive Monoidal Categories

The axioms of braided monoidal categories imply all of the rewrites in Figure 5 save L3. Balanced
monoidal categories only allow 360◦ rotations, so their axioms cannot imply L3. One reason why
the axioms of balanced categories cannot guarantee half twists is because if 𝑥 : 𝐴 ⊗ 𝐵 → 𝐶 ⊗ 𝐷 is
a morphism, there is no guarantee there is some 𝑥 ′ : 𝐵 ⊗ 𝐴→ 𝐷 ⊗ 𝐶 that represents its “flipped”
counterpart.
This idea of flipping can be represented by an involutive functor (·) : C → C that reverses the

order of object composition: 𝐴 ⊗ 𝐵 = 𝐵 ⊗ 𝐴. The functor (·) is called involutive because it is its
own inverse, on both objects and morphisms: 𝐴 = 𝐴 and 𝑥 : 𝐴→ 𝐵 = 𝑥 : 𝐴→ 𝐵. In our diagram
algebra, we represent (·) as rotating a diagram 180◦.
A strict twisted involutive monoidal category [5] is a monoidal category equipped with some

involutive functor (·) and a natural isomorphism Δ𝐴 : 𝐴→ 𝐴, called a twist. This twist is drawn
as a 180◦ rotation of its input object around itself; see Figure 6d for how we denote a twist on
framed strands diagrammatically. Additionally, the twist Δ𝐴 must satisfy certain conditions on
its interaction with (·). These conditions are satisfied in our diagrammatic language; see Egger
2011 [5] for details.
Twisted involutive monoidal categories also satisfy the requirements of balanced monoidal

categories, with 𝜎𝐴,𝐵 := Δ𝐴⊗𝐵 ; (Δ−1𝐵 ⊗ Δ−1
𝐴
) and 𝜃𝐴 := Δ𝐴;Δ𝐴

. This second equality agrees with
diagrammatic intuition: 𝜃𝐴, a 360◦ rotation, is composed of two Δ𝐴 morphisms, both 180◦ rotations.
Because Δ𝐴 is natural, it also “commutes” with morphisms: for any 𝑥 : 𝐴 → 𝐵, we have

Δ−1
𝐴
;𝑥 ;Δ𝐵 = 𝑥 . This naturality implies L3, and (·) allows us to express the flipped-over version of a

stitch (in knitting terminology, a knit versus a purl).

3.3 Our Categorical Semantics

We specify the twisted involutive monoidal category on which we define our canonicalization
procedure.

Definition 3.1 (Knit semantics category, K). K is a twisted involutive monoidal category whose
objects are the free monoid with generators Σ. This means that its objects are lists of letters
in Σ. Every letter labels a strand, and so objects are lists of strands: 𝐴 := [𝑎1, 𝑎2, . . . , 𝑎𝑛] . The
identity object 𝐼 is the empty list: 𝐼 := [] . The monoidal product ⊗ is the concatenation of lists:
[𝑎1, 𝑎2, . . . , 𝑎𝑛] ⊗ [𝑏1, 𝑏2, . . . , 𝑏𝑚] := [𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚] . The involution (·) reverses a list:
[𝑎1, 𝑎2, . . . , 𝑎𝑛] := [𝑎𝑛, . . . , 𝑎2, 𝑎1] .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:10 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

For every object 𝐴, there is an identity morphism id𝐴 : 𝐴→ 𝐴. For any two objects, there is a
braiding morphism 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴. We define Δ𝐴 to be a specific morphism composed of 𝜎
braids:10

Δ[𝑎]⊗𝐴′ := 𝜎[𝑎],𝐴′ ; (Δ𝐴′ ⊗ id[𝑎])
Δ[] := id[] .

Note that 𝜎𝐴,𝐵 = Δ𝐴⊗𝐵 ; (Δ−1𝐵 ⊗ Δ−1
𝐴
), as [5] suggested: for any lists 𝐴, 𝐵,

Δ𝐴⊗𝐵 = 𝜎𝐴,𝐵 ; (Δ𝐵 ⊗ Δ𝐴).
See Figure 8 for a visual justification of this equality; the left diagram is a canonical visual repre-
sentation of Δ.11
In addition to the braid isomorphism 𝜎𝐴,𝐵 and the half twist Δ𝐴, K has some collection of

morphisms box : 𝐴→ 𝐵 for |𝐴| ≥ 1 and |𝐵 | ≥ 2. These are the boxes in our diagrams. We delay the
formal definition of the box morphisms to Section 8, as their definition relies on a procedure we
call slurping that is specific to our translation of knitout toK . The boxmorphisms act freely within
the axioms of twisted involutive monoidal categories, meaning the only manipulations involving
box morphisms are those required to exist by twisted involutive monoidal categories – that is, L1,
L2, L3, and M1. The words in K are therefore composed of only 𝜎𝐴,𝐵 crossings and box morphisms,
as Δ𝐴 can be written using 𝜎𝐴,𝐵 crossings.

a1 a2 a3 b1 b2

b2 b1 a3 a2 a1

=

a1 a2 a3 b1 b2

b2 b1 a3 a2 a1

Fig. 8. Visual justification that Δ𝐴⊗𝐵 = 𝜎𝐴,𝐵 ; (Δ𝐵 ⊗ Δ𝐴) for 𝐴 =

[𝑎1, 𝑎2, 𝑎3] and 𝐵 = [𝑏1, 𝑏2]. All crossings in Δ are positive (left

over right).

On top of the categorical structure
ofK,we impose some additional con-
straints for the sake of our canonical-
ization. We first assume there is some
given equivalence relation on the box
morphisms of K – even though a
knit and a purl may have the same
counts of input and output strands,
we do not consider them identical.We
describe the collection of box mor-
phisms and their equivalence relation
in full detail in Subsection 8.1.
For the algorithm, we also impose that every box morphism’s input and output strands have

some total ordering. If a boxmorphism is denoted 𝑆, we use 𝑆 := {𝑠1, 𝑠2, . . .} to represent its ordered
output strands (drawn above the box) and 𝑆 ′ := {𝑠′1, 𝑠′2, . . .} for its ordered inputs (drawn below the
box). We also restrict that (·) reverses total orderings. For example, if the leftmost output strand is
foremost in the order of some box morphism 𝑆 (hence it is denoted 𝑠1), then the rightmost input
strand in 𝑆 will be foremost (still denoted 𝑠1). When translating from formal knitout, we always
assign the total order of strands as either left to right or right to left, depending on the direction of
knitting.

4 Getting Started with Braids

We first detail the most primitive step of our canonicalization algorithm – how can we canonicalize a
sequence of braids 𝜎, that is, words without boxmorphisms? Equivalently, how can we canonicalize
10Readers familiar with the braid group may recognize this definition of the half twist as the Δ braid in the braid group; this
is why we use the symbol Δ. The naturality of 𝜃𝐴 = Δ𝐴 ;Δ𝐴

corresponds to Δ2 generating the center of the braid group.
11In our later diagrams, we choose to draw braids so only one crossing happens per horizontal row: for Δ𝐴 with |𝐴 | = 𝑛,

we draw the
(𝑛
2
)
crossings in a staggered diagram instead of all at once.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:11

words in K up to equivalence using only the diagram moves B1, B2, and B3? Such braids closely
correspond with the braid group, the crossings of 𝑛 progressive (monotonic) strands over each
other. There is a known polynomial-time canonicalization of the braid group [4] called the greedy
normal form, which we adapt to our setting.

Theorem 4.1 (Dehornoy [4], Section 2). There exists a canonicalization of the braid group called

the greedy normal form that runs in 𝑂 (𝑏2𝑛 log(𝑛)) time on a braid with 𝑏 crossings and 𝑛 strands.

α c d β

α d c β

Fig. 9. Diagrammatic representation of 𝜎𝑐,𝑑 : 𝛼𝑐𝑑𝛽 →
𝛼𝑑𝑐𝛽 for |𝛼 | = 3, |𝛽 | = 5. The strands in 𝛼, 𝛽 are not

moved, and only 𝑐, 𝑑 cross.

We use this canonicalization of the braid
group as the Braid step of our canonicaliza-
tion of K . The middle two braids in Figure 10
show an example of the greedy normal form
on the braid group.

We define the braid groupoid, B . It is closely
related to the braid group, except strands have
labels. This corresponds exactly to K without
box morphisms. Each 𝜎 is an isomorphism, so
B is a groupoid.

Definition 4.2 (Braid groupoid, B). B is the braid groupoid. Informally, it represents braids from
the braid group where each strand is labeled; two braids can compose only when their labels line
up.
Its objects are sequences of distinct letters, where each letter labels a strand. This is a slight

modification of K’s objects, which allow duplicate letters. Because K’s object monoid is free, we
can easily rename strands to make a distinct sequence to represent some braid from K in B . We
often label strands by which box they connect to and index them by their total order from that box.
B’s morphisms are generated by crossings of two strands. For any 𝛼, 𝛽 that are possibly empty

sequences of distinct letters not containing the letters 𝑐, 𝑑, there is a generator 𝜎𝑐,𝑑 : 𝛼𝑐𝑑𝛽 → 𝛼𝑑𝑐𝛽

that crosses strand 𝑐 over strand 𝑑. 𝜎𝑐,𝑑 : 𝑝 → − is defined for any sequence 𝑝 where 𝑐 is directly
to the left of 𝑑. See Figure 9 for an example of 𝜎𝑐,𝑑 : 𝛼𝑐𝑑𝛽 → 𝛼𝑑𝑐𝛽. In the notation of K, we would
write 𝜎𝑐,𝑑 : 𝛼𝑐𝑑𝛽 → 𝛼𝑑𝑐𝛽 as id𝛼 ⊗ 𝜎[𝑐],[𝑑] ⊗ id𝛽 .

Note that the domain and the crossed strands 𝑐, 𝑑 uniquely determine the codomain. Hence for
some sequence of strands 𝑝 that contains [𝑐, 𝑑], we can describe a unique generator 𝜎𝑐,𝑑 : 𝑝 → −.
When context allows, we omit the object 𝑝 and refer to some class of generators 𝜎𝑐,𝑑 , which all
cross 𝑐 over 𝑑 but differ in the strands to the left and right of 𝑐, 𝑑. The identity braid (no crossings)
for any sequence object 𝑝 is denoted as id𝑝 : 𝑝 → 𝑝 . Similarly, we denote an identity morphism,
regardless of object, with id.
B has commutative diagrams (the category-theoretic analog of the equations in the presentation

of a group) for the shift-past commuting relation
𝜎𝑎,𝑏 ;𝜎𝑐,𝑑 = 𝜎𝑐,𝑑 ;𝜎𝑎,𝑏

and the Yang-Baxter equation
𝜎𝑎,𝑏 ;𝜎𝑎,𝑐 ;𝜎𝑏,𝑐 = 𝜎𝑏,𝑐 ;𝜎𝑎,𝑐 ;𝜎𝑎,𝑏,

where 𝑎, 𝑏, 𝑐, 𝑑 are distinct in both. These relations correspond to diagram moves B2 and B3 respec-
tively, and B1 arises from every braid being invertible.

The greedy normal form also canonicalizes the braid groupoid; see Figure 10 for an example.

Corollary 4.3. The greedy normal form canonicalizes words in 𝑤 ∈ B in 𝑂 (𝑏2𝑛 log(𝑛)) time,

where𝑤 can be written with 𝑏 generators 𝜎𝑥,𝑦 and there are 𝑛 = |dom(𝑤) | = |cod(𝑤) | strands.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:12 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

Proof. 𝑤 ∈ B can be mapped to a braid in the braid group by forgetting the labels of its strands.
After performing the greedy normal form canonicalization, restore the labels. □

a b c d e

b e a c d

→ → →
a b c d e

b e a c d

Fig. 10. The canonicalization of the braid groupoid B described in Corollary 4.3. A braid groupoid word in B
loses its labels to become part of the braid group, is converted to its greedy normal form, and has its labels

replaced.

5 Introducing Boxes

In this section, we present our first nontrivial result: a procedure for canonicalizing words in K
up to equivalence by diagram moves B1, B2, B3 and L1, L2, L3. We reserve handling move M1 until
the next section. Because M1 is the only move that changes the order of boxes, this section solves
program equivalence if some canonical order on boxes is guaranteed. For instance, when knitting
with only one yarn carrier, that yarn touches every box morphism, enforcing a total order on
stitches. For such programs, this section’s solution suffices.
We begin with some diagrammatic intuition. Figure 11 shows a word in 𝑋 ∈ K on the left.

Applying L1, L2, and L3 in that order follows the solid black arrow to yield a new word 𝑋 ′ ∈ K that
is equivalent to the original 𝑋 . Consider a naive attempt to canonicalize 𝑋,𝑋 ′ to a shared normal
form that applies Braid (the braid group’s greedy normal form) to the portions of the word on the
top and bottom of the box. This approach is insufficient: the L1 move has changed the horizontal
position of the box, and the L3 move has changed its orientation.
Instead, we focus our attention on the circled crossings in Figure 11. We index the ordered

strands coming out (above) the box as 𝑠𝑖 , strands coming into (below) the box as 𝑠′𝑖 , and strands not
touching the box (in an arbitrary order) as 𝑟𝑖 . We circle crossings above the box that involve (1) 𝑠1
and any 𝑟𝑖 ; (2) any two 𝑟𝑖 ; or (3) 𝑠1 and 𝑠2. These cases correspond to L1, L2, and L3 respectively:
each diagram move always introduces one and only one circled crossing above the box. For ease in
identifying these crossings, we draw the 𝑠1 strand with a slightly lighter color than the other 𝑠𝑖 .
Given any word with one box morphism in it, we circle crossings above the box and perform the
corresponding L1, L2, and L3 moves to invert those circled crossings in a canonicalization step we
call Layer. The circling of crossings can be recognized as an algebraic projection via a functor, and
Layer ensures that the projection is the identity. Later, we define our canonical form in part to be
words where all projections above boxes are the identity.

The red dashed arrows in Figure 11 show the result of Layer on both words 𝑋,𝑋 ′ . The L1, L2, L3
rewrite sequence from 𝑋 to 𝑋 ′ is undone when applying Layer on 𝑋 ′, and each crossing circled
in gray is inverted by a crossing circled in dashed red. If one were to apply Braid on the top
and bottom braids of both Layer(𝑋) and Layer(𝑋 ′), the results would be syntactically identical.
Figure 12 shows an example of Layer in full on a more typical example.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:13

r1 s′1 s′2 r2

s1 r1 s2 r2

▶

r1 s′1 s′2 r2

L1

L2

L3

L3

L2

L1

s1 r1 s2 r2

◀

L1

L1

r1 s′1 s′2 r2

s1 r1 s2 r2

▶

L1

L2

L3

L3

L2

L1

L1

L1

L1

L2

L3

L3

L2

L1

r1 s′1 s′2 r2

s1 r1 s2 r2

▶
L1, L2, L3

Layer

Layer

Fig. 11. The word 𝑋 ∈ K on the left can be rewritten to a new word 𝑋 ′ via the black solid arrow by applying

L1, L2, then L3. The new crossings are labeled with which diagram rule created them. Later applications

of diagram rules push out the earlier crossings away from the box. The crossings used by our Layer step

are circled in solid gray. The crossings introduced by Layer are circled and bracketed in dashed red. After

applying Layer to both 𝑋,𝑋 ′, they are equivalent up to B1, B2, and B3, which can be canonicalized by Braid.

I

Layer→
J

Fig. 12. Example application of Layer.We have applied

some braid simplifications to the resulting word to

illustrate how crossings have moved.

We often represent a word in 𝑋 ∈ K as 𝑋 =

𝑥0; 𝑆1;𝑥1; 𝑆2; · · · ;𝑥𝑚−1; 𝑆𝑚 ;𝑥𝑚 , where the 𝑥𝑖 are
braids in B and the 𝑆𝑖

12 are box morphisms.
Note that there is only one way to divide a word
𝑋 into a sequence of braids and boxmorphisms.
As a reminder, we read words left to right, and
draw them bottom to top to agree with machine
knitting.
To canonicalize a word in K up to equiv-

alence by the six diagram moves not includ-
ing M1, we first cancel out circled crossings in
𝑥𝑚 by executing Layer around 𝑆𝑚, then cancel
circled crossings in 𝑥𝑚−1 by executing Layer
around 𝑆𝑚−1, and so on until all circled cross-
ings from 𝑥𝑚 down through 𝑥1 are canceled.
Note that there is no box below 𝑥0, so we do not execute Layer to cancel out crossings in it. After

12We use the letter 𝑆 because box morphisms represent stitches in knitting.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:14 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

repeatedly applying Layer, we have canonicalized the L1, L2, and L3 moves. We can then apply
Braid on every braid in the result to canonicalize the B1, B2, and B3 moves.

5.1 Formalizing Layer

This subsection is meant to give the reader a feel for how we formalize concepts in Layer like
circled crossings. We introduce some notation that will be used later, but reserve formal definitions
until Appendix A of our supplementary material.

Let 𝑆 be some box morphism. As mentioned in Section 3, we also use 𝑆 to refer to the ordered set
of strands coming out of (above) the box 𝑆, so the set 𝑆 := {𝑠1, 𝑠2, . . .}. Similarly, 𝑆 ′ is the ordered
set of strands coming into (below) the box 𝑆, so 𝑆 ′ := {𝑠′1, 𝑠′2, . . .}.
We encode circled crossings with two functors (i.e., structure-preserving transformations), 𝛾𝑆

and 𝛿𝑆 . They both map braids in B containing the 𝑠𝑖 strands (so these braids must be above the
box 𝑆) to braids on less strands by ignoring certain strands, leaving only circled crossings behind.
The 𝛾𝑆 functor records circled crossings from L1 and L2, while 𝛿𝑆 records crossings from L3. The
crossings recorded by L3 always commute with those from L1 and L2: the Δ twist from L3 slides
through L1’s crossings via B3, and past L2’s crossing via B2.
Then, we use a bifunctor 𝜙𝑆 that acts as a pseudo-inverse to 𝛾𝑆 and 𝛿𝑆 . It reconstructs braids

above the 𝑆 box representing the L1, L2, and L3 moves using the braids output by 𝛾𝑆 and 𝛿𝑆 .

This is guaranteed to reconstruct the circled crossings exactly, up to L3’s crossings commuting
with L1’s and L2’s. To simplify our notation, we let𝜓𝑆 be shorthand for this operation on braids:
𝜓𝑆 (𝑥) := 𝜙𝑆 (𝛾𝑆 (𝑥), 𝛿𝑆 (𝑥)).

Finally, there is a bifunctor 𝜙𝑆 ′ , similar to 𝜙𝑆 , that takes the circled crossings from 𝛾𝑆 and 𝛿𝑆 and
reconstructs braids below the 𝑆 box representing the diagram moves. We use the abbreviation 𝜏𝑆 (𝑥)
for reconstructing circled crossings below the box: 𝜏𝑆 (𝑥) := 𝜙𝑆 ′ (𝛾𝑆 (𝑥), 𝛿𝑆 (𝑥)). Note that 𝜏𝑆 takes a
braid above the box 𝑆, but returns a braid below the box 𝑆. Figure 13 contains examples of these
functors applied to a word 𝑥 ∈ B.
Our Layer move takes some portion of a word 𝑥𝑖 ; 𝑆𝑖 ;𝑥𝑖+1, and calculates both 𝛾𝑆𝑖 (𝑥𝑖+1) and

𝛿𝑆𝑖 (𝑥𝑖+1). It uses those results to calculate
𝜓𝑆𝑖 (𝑥𝑖+1) = 𝜙𝑆𝑖 (𝛾𝑆𝑖 (𝑥𝑖+1), 𝛿𝑆𝑖 (𝑥𝑖+1)) and 𝜏𝑆𝑖 (𝑥𝑖+1) = 𝜙𝑆 ′

𝑖
(𝛾𝑆𝑖 (𝑥𝑖+1), 𝛿𝑆𝑖 (𝑥𝑖+1)),

and rewrites
𝑥𝑖 ; 𝑆𝑖 ;𝑥𝑖+1 = 𝑥𝑖 ;𝜏𝑆𝑖 (𝑥𝑖+1); 𝑆𝑖 ;𝜓𝑆𝑖 (𝑥𝑖+1)−1;𝑥𝑖+1

= 𝑥𝑖 ;𝜙𝑆 ′
𝑖
(𝛾𝑆𝑖 (𝑥𝑖+1), 𝛿𝑆𝑖 (𝑥𝑖+1)); 𝑆𝑖 ;𝜙𝑆𝑖 (𝛾𝑆𝑖 (𝑥𝑖+1), 𝛿𝑆𝑖 (𝑥𝑖+1))−1;𝑥𝑖+1,

effectively conjugating the 𝑆𝑖 box with braids on either side to make the braid above 𝑆𝑖 the identity
in the projections of both 𝛾𝑆𝑖 (𝑥𝑖+1) and 𝛿𝑆𝑖 (𝑥𝑖+1).

We prove later that Layer’s rewrite can be recreated using only L1, L2, and L3, so Layer preserves
word equivalence. A key algebraic insight is that after applying Layer around some box morphism
𝑆𝑖 , the braid on top of 𝑆𝑖 will always have circled crossings that cancel out:

𝛾𝑆𝑖 (𝜓𝑆𝑖 (𝑥𝑖+1)−1;𝑥𝑖+1) = id and 𝛿𝑆𝑖 (𝜓𝑆𝑖 (𝑥𝑖+1)−1;𝑥𝑖+1) = id,

so𝜓𝑆𝑖 (𝜓𝑆𝑖 (𝑥𝑖+1)−1;𝑥𝑖+1) = id. We refer to this property as the braid being simplified by Layer.
Repeatedly applying Layer to move complexity down the word canonicalizes the L1, L2, and

L3 moves. After that, Braid on each braid canonicalizes B1, B2, and B3. All that remains is to
canonicalize M1 by achieving a canonical order of box morphisms; our next section details that
process.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:15

r2 s1 r1 s2 s3

r1 s2 s1 r2 s3

(a) 𝑥

r2 s1 r1

r1 s1 r2

(b) 𝛾𝑆 (𝑥)

s1 s2

s2 s1

(c) 𝛿𝑆 (𝑥)

r2 s1 s2 s3 r1

r1 s3 s2 s1 r2

(d)𝜓𝑆 (𝑥) := 𝜙𝑆 (𝛾𝑆 (𝑥), 𝛿𝑆 (𝑥))

I

(e) box : 𝑆 ′ → 𝑆

r2 s′1 s′2 r1

r1 s′2 s′1 r2

(f) 𝜏𝑆 (𝑥) := 𝜙𝑆 ′ (𝛾𝑆 (𝑥), 𝛿𝑆 (𝑥))

Fig. 13. Example of functors applied to a word 𝑥 ∈ B. Note that all circled crossings in 𝑥 are in one of

𝛾𝑆 (𝑥), 𝛿𝑆 (𝑥) but never both. The circled crossings in 𝑥 are the same as in𝜓𝑆 (𝑥) and 𝜏𝑆 (𝑥). In this example,

|𝑆 | = 3 and |𝑆 ′ | = 2, as illustrated by Figure 13e.

6 Finishing the Canonicalization

I

I

(a) Can move past

I

I

(b) Cannot move past

Fig. 14. Examples of boxes that can and can-

not move past each other, respectively.

We present the final piece of our canonicalization algo-
rithm, called Swap, which recognizes equalities by the
M1 diagram rule. This means that we achieve a canonical
vertical order of all the box morphisms in a word. We
first apply Layer repeatedly, moving down the word as
before. Next, we use canonical properties of the input to
find a canonical total order on the boxes. We start with
the total order of the word’s input strands. A straightfor-
ward depth-first traversal starting with the word’s input
strands in order and following the output strands of every
box in order will yield a canonical total order. The boxes
are then renamed 𝑆1 . . . 𝑆𝑚 according to this total order
(note the indices likely do not match the vertical order of boxes). We refer to this order as the ideal
order – in the ideal world, we could rearrange boxes to achieve this order, and this step would be
complete!

Even though we have a total order on boxes, it is likely not realizable: if two boxes are connected
via a strand, then they cannot move past each other. Unfortunately, this is not the only reason two
boxes cannot trade places: Figure 14 shows two simple words, one where disconnected boxes can
move past each other and the other where they cannot due to how strands cross each other.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:16 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

To disambiguate the situations in Figure 14, we introduce the move-past decision procedure. It
takes as input some subword 𝐵;𝑥 ;𝑇 13 where 𝜓𝐵 (𝑥) = id (guaranteed after applying Layer) and
decides whether it is possible for 𝐵 and 𝑇 to move past each other. If they are, it returns the L1,
L2, L3, and M1 moves to cancel out the 𝑥 in the middle, swap, and then resimplify the word with
respect to Layer. We later verify the decision procedure’s completeness and prove that if 𝐵 and 𝑇
cannot move past each other in a 𝐵;𝑥 ;𝑇 subword, then no matter what rewrites and reorderings
are made on the word containing that subword, 𝐵 and 𝑇 can never move past each other.

6.1 Move-past Procedure

Given a subword 𝐵;𝑥 ;𝑇 with 𝜓𝐵 (𝑥) = id, we execute a rewrite similar to Layer, but instead of
moving complexity down past 𝐵, we move it up past 𝑇 . To describe this operation, we introduce
new functors that are similar to those from Layer. In Layer, the functors𝜓𝐵 and 𝜏𝐵 take a braid
above the box 𝐵, circle some key crossings, and return braids representing L1, L2, and L3 above and
below 𝐵 respectively. Similarly, we use functors𝜓 ′

𝑇
and 𝜏 ′

𝑇
that take a braid below 𝑇 (still between

𝐵 and 𝑇) circle potentially different key crossings, and return braids representing L1, L2, and L3
below and above 𝑇 respectively. We use the ′ marking to denote that these functors circle crossings
below the box 𝑇, while𝜓𝑇 and 𝜏𝑇 ’s domains would be braids above the box 𝑇 .

The difference in circled crossings is because𝜓 ′
𝑇
and 𝜏 ′

𝑇
record L1, L2, and L3 moves around the

box 𝑇 , while 𝜓𝐵 and 𝜏𝐵 record moves around the box 𝐵. Let 𝑇 ′ = {𝑡 ′1, 𝑡 ′2, . . .} be the input set of
strands below the box𝑇 . The crossings circled by 𝛾𝑇 ′ , 𝛿𝑇 ′ are (1) 𝑡 ′1 and any non-𝑡 ′𝑖 (𝛾𝑇 ′); (2) any two
non-𝑡 ′𝑖 (𝛾𝑇 ′); and (3) 𝑡 ′1 and 𝑡 ′2 (𝛿𝑇 ′).14 Each circled crossing corresponds to L1, L2, or L3 around 𝑇
as before, and the functors𝜓 ′

𝑇
(𝑥) := 𝜙𝑇 ′ (𝛾𝑇 ′ (𝑥), 𝛿𝑇 ′ (𝑥)) and 𝜏 ′𝑇 (𝑥) := 𝜙𝑇 (𝛾𝑇 ′ (𝑥), 𝛿𝑇 ′ (𝑥)) map those

circled crossings to braids below and above the box 𝑇 respectively. Let

𝑓 (𝑥) := Braid(𝑥 ;𝜓 ′𝑇 (𝑥)−1).

We later prove that 𝑓 (𝑥) = id if and only if 𝐵 can move past 𝑇 .
When 𝑓 (𝑥) = id, our move-past procedure rewrites

𝐵;𝑥 ;𝑇 ;𝑦; 𝑆 → 𝑇 ;𝜏𝐵 (𝑦);𝐵;𝜓𝐵 (𝑦)−1;𝜏 ′𝑇 (𝑥);𝑦;𝑆.

See Figure 15 for an example of a successful box swap. We denote such a move as Swap. We show
later this rewrite is composed of only L1, L2, L3, and M1, so it preserves word equivalence. We
also prove that the simplification property guaranteed by Layer (certain𝜓 projections are id) is
preserved by this rewrite.

I

I

I

Swap→
I

I

I

=
I

I

I

Fig. 15. Application of Swap on a small example.

13We use 𝐵 for bottom and𝑇 for top.
14An astute reader will notice the possibility of |𝑇 ′ | = 1, which was not present describing Layer: every box morphism has
2 or more output strands, but only requires at least 1 input. Definition A.9 of our supplementary material details all the
ramifications of this degenerate case; in that case, 𝜏 ′

𝑇
is overloaded, ambiguously referring to one of two similar functors!

We omit those details in this section, as they would muddy an already notationally involved algorithm.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:17

6.2 Achievable Canonical Order

We use the ideal (but possibly not achievable) order of boxes and our move-past decision procedure
to achieve a canonical order of boxes. The possibly unachievable order of boxes gives each box 𝑆𝑖
some canonical index 𝑖 . We repeatedly find the highest index 𝑖 such that 𝑆𝑖 can be moved to the
top of the word. Some box must be found, since there is always some box already at the top of the
word. We provide results in Subsection 7.1 that show this procedure’s chosen box is canonical. We
execute the swaps to move that target box to the top of the word, and lock its position. We repeat
for the rest of the boxes, finding the highest index 𝑖 such that 𝑆𝑖 is unlocked and can be moved
above all other unlocked boxes.
This step canonicalizes equalities by M1. The earlier sequence of repeated Layer applications

canonicalized L1, L2, and L3. Applying Braid to every braid 𝑥𝑖 canonicalizes B1, B2, and B3, com-
pleting our canonicalization.

7 Outline of Algorithm’s Correctness

We provide an outline of the proof of our canonicalization’s correctness, omitting the more involved
lemmas. We first present our full canonicalization algorithm in Algorithm 1.

Algorithm 1: Canonicalization algorithm
Data:Word 𝑋 ∈ K
Result: Canonical form of 𝑋
for 𝑖 =𝑚 . . . 1 do

Execute Layer around 𝑆𝑖 ; /* Step 1: Layer */

end
𝑆𝑖 ← ideal order of boxes ; /* reindex 𝑆𝑖 */

while some boxes have not been locked do
for every unlocked box 𝑆 in decreasing ideal order do

if 𝑆 can be moved above all unlocked boxes then
Move 𝑆 above all unlocked boxes using Swap ; /* Step 2: Swap */

Lock 𝑆 ;
end

end
end
for each braid 𝑥𝑖 do

Execute Braid on 𝑥𝑖 ; /* Step 3: Braid */

end

7.1 Move-past Procedure

Theorem 7.1 establishes that the move-past procedure always returns the correct result up to
rewrites of the 𝐵;𝑥 ;𝑇 subword. We state and prove a more general result than our algorithm uses –
in our algorithm,𝜓𝐵 (𝑥) = id always so the move-past check is simpler.

Theorem 7.1. For all subwords 𝐵;𝑥 ;𝑇, let
𝑓 (𝑥) := Braid(𝜓𝐵 (𝑥)−1;𝑥 ;𝜓 ′𝑇 (𝜓𝐵 (𝑥)−1;𝑥)−1).

Then

𝑓 (𝑥) = id ⇐⇒ 𝐵,𝑇 can move past each other in the subword 𝐵;𝑥 ;𝑇 .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:18 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

Theorem 7.2 extends Theorem 7.1 by showing that the move-past procedure always returns the
same result for a pair of adjacent boxes 𝐵,𝑇 , regardless of interference by other boxes in a larger
word:

Theorem 7.2. For any word 𝑋 containing the subword 𝐵;𝑥 ;𝑇,
∃𝑋 ′ a rewrite of 𝑋 : 𝑇 is below 𝐵 ⇐⇒ 𝐵,𝑇 can move past each other in the subword 𝐵;𝑥 ;𝑇 .
We provide proofs of both theorems in Appendix C of our supplementary material. Taken

together, they imply that the move-past procedure always returns a correct and consistent result
for any two boxes. When using the move-past procedure to query whether some box can move
to the top of the word, if the move-past procedure fails to move that box above another, the box
cannot move to the top of the word.

7.2 Algorithm Canonicalizes

We formalize our algorithm as an Abstract Rewriting System (ARS) over words in K . An ARS is
some binary relation→ on words inK, with 𝑋 → 𝑋 ′ meaning that the word 𝑋 can be rewritten to
𝑋 ′ . An important feature of rewriting systems is whether they are canonicalizing. Given any word
𝑋, a canonicalizing ARS will always rewrite 𝑋 to some unique term 𝑋 ′ that cannot be rewritten,
called a normal form. This happens regardless of→ choices made along the way when some term
rewrites to multiple terms. A sufficient condition for an ARS to be canonicalizing is when it is both
terminating (there are no infinite chains of rewrites) and weakly confluent (if 𝑋 → 𝑋1 and 𝑋 → 𝑋2,

there exists some 𝑋 ′ where 𝑋1
∗→ 𝑋 ′ and 𝑋2

∗→ 𝑋 ′, where ∗→ is the reflexive transitive closure of
→). We prove our ARS is canonicalizing by showing it is both terminating and weakly confluent.
Definition 7.3. Let X be the set of words representing morphisms in our category K, and let
≡𝑑 ⊆ X × X be the reflexive transitive symmetric closure of the diagram rules, so two words
𝑥,𝑦 ∈ X are equivalent in ≡𝑑 when they can be rewritten to each other.

We describe the energy of a word, where the lower a word’s energy is, the closer it is to its
canonical form. We use energy to direct our rewrites, only allowing rewrites that strictly lower
energy.

Definition 7.4. The energy of a word
𝑋 = 𝑥0; 𝑆1;𝑥1; · · · ; 𝑆𝑚 ;𝑥𝑚

is a tuple in N3, and energies are ordered in dictionary order (the first coordinate is the most
important).

Its first entry is
𝑚∑︁
𝑖=1

{
𝑖 𝜓𝑖 (𝑥𝑖) ≠ id

0 otherwise,
which encodes the first step of the algorithm, where braids should be simplified from the top down.

For some box 𝑆𝑖 , we define
goal(𝑆𝑖) = the vertical position of 𝑆𝑖 after the Swap step of the algorithm completes,

so the box with the highest goal(𝑆𝑖) is the highest box in the (possibly unachievable) canonical
order that can move to the top of the word. After moving that box to the top, the second-highest
goal(𝑆𝑖) is defined similarly, ignoring the already-assigned box at the very top. The energy’s second
entry is the inversion number

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

{
1 goal(𝑆𝑖) > goal(𝑆 𝑗)
0 otherwise.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:19

This entry encodes the second step of the algorithm, where boxes are vertically ordered.
Its third entry is

𝑚∑︁
𝑖=0

{
1 𝑥𝑖 not in canonical braid form
0 otherwise,

which encodes the third step of the algorithm, where braids should be put into canonical form.

We describe an ARS with a new set of diagram rewrites, with 3 classes of rewrites instead of
7. The rewrites closely correspond to the stages of our algorithm. We restrict them to always
strictly decrease the energy of a word, so these rewrites are directed. Because N and its powers are
well-founded, this makes our rewriting system terminating. We first prove that if two words are
equivalent by ≡𝑑 , then they can be rewritten into some shared form by our ARS. This shows that
our new rewrites capture the correct equalities. We then prove our desired result: our rewriting
system is canonicalizing.

Definition 7.5. We form an ARS (→) ⊆ X × X from the following rewrite rules, included in→
whenever they strictly reduce energy:
• Layer: Rewrites some subword 𝐵;𝑥 ;𝑇 to 𝜏𝐵 (𝑥);𝐵;𝜓𝐵 (𝑥)−1;𝑥 ;𝑇, like in the first step of the
algorithm.
• Swap: Rewrites some subword 𝐵;𝑥 ;𝑇 ;𝑦; 𝑆 where𝜓𝐵 (𝑥) = id,𝜓𝑇 (𝑦) = id, and where 𝐵,𝑇 can
move past each other to

𝑇 ;𝜏𝐵 (𝑦);𝐵;𝜓𝐵 (𝑦)−1;𝜏 ′𝑇 (𝑥);𝑦;𝑆,
like in the second step of the algorithm.
• Braid: Rewrites some subword 𝐵;𝑥 ;𝑇 to 𝐵; canon(𝑥);𝑇 like in the third step of the algorithm.

Swap always preserves the simplification from Layer, so it does not increase Layer’s higher-
importance energy value:

Lemma 7.6. For disjoint 𝐵,𝑇 , with both |𝐵 |, |𝑇 | > 1, if𝜓𝐵 (𝑥) = id and𝜓𝑇 (𝑦) = id then

𝜓𝑇 (𝜏𝐵 (𝑦)) = id and𝜓𝐵 (𝜓𝐵 (𝑦)−1;𝜏 ′𝑇 (𝑥);𝑦) = id.

Proof. See Appendix D of our supplementary material. □

We prove these new rewrites express the same equalities as the old rewrites in Appendix D. Here,
we provide an informal proof.

Lemma 7.7. ≡𝑑 (the reflexive transitive symmetric closure of the diagram rules) is the same equiva-

lence relation as the reflexive transitive symmetric closure of→ .

Proof. For the forward direction: if two words are connected by B1, B2, B3, then applying Braid
on both makes them the same. Similarly, L1, L2, and L3 are undone by Layer. The M1 case is difficult,
as M1 does not require words to be simplified, but Swap does. In the formal proof, we simplify the
word, apply Swap, and show we arrive at the same result and reduced energy with each rewrite.

For the backwards direction, we recognize Layer, Swap, and Braid as compositions of diagram
rewrites. □

After establishing that Layer, Swap, and Braid represent the desired equivalences, we show
that→ is weakly confluent. We again supply an informal proof; our full proof is in Appendix D.

Theorem 7.8. The rewriting system→ on words inK formed by Layer, Swap, and Braid is weakly

confluent.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:20 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

Proof. Our proof handles the 6 cases of each of the 3 rules being weakly confluent with itself or
another rule. Most of our cases are trivial. Layer with Layer and Swap with Swap are our most
involved, and we provide sketches for each.

Let 𝐵;𝑥 ;𝑇 ;𝑦; 𝑆 be a subword of 𝑋 . Our Layer case shows that simplifying the braid at 𝑦 then 𝑥

results in the same word as simplifying 𝑥 then 𝑦 then 𝑥, showing that energy is reduced by each
rewrite.
Our Swap case shows that for some initial order of boxes 𝐴;𝐵;𝐶, swapping 𝐴, 𝐵 then 𝐴,𝐶 then

𝐵,𝐶 (reversing the boxes’ order) results in the same word as swapping 𝐵,𝐶 then 𝐴,𝐶 then 𝐴, 𝐵,

again showing each rewrite reduces energy. □

Corollary 7.9. → is canonicalizing.

Proof. Because N and its powers are well-founded,→ is terminating. By Theorem 7.8, it is
weakly confluent. Because→ is both terminating and weakly confluent, it is canonicalizing. □

7.3 Polynomial-Time Execution

We claim the algorithm presented in Section 6 calculates the normal form of our ARS. We provide
full proofs of these statements in Appendix E of our supplementary material.

Lemma 7.10. Given any word 𝑋, the algorithm in Algorithm 1 calculates the normal form of 𝑋 in

→.

Proof. We show in Appendix E that the word returned by Algorithm 1 always has zero energy,
so it must be irreducible. □

Finally, we show that Algorithm 1 runs in polynomial time. It should be noted that we do not
believe our bound is tight, as the goal of this paper is to establish a polynomial result. Future work
in efficient algebraic representations or algorithmic tricks specific to machine knitting may produce
much faster results.

Theorem 7.11. Algorithm 1 runs in 𝑂 (𝑛5𝑚7𝑏2 log(𝑛)) time on words in K with 𝑛 strands in total,

𝑚 box morphisms, and braid words between pairs of box morphisms with 𝑂 (𝑏) crossings each.

8 Translating Knitout

In this section, we informally describe how to map knitout into our categorical semantics. The main
contribution of this paper is the canonicalization of words in K, and this section motivates our
canonicalization by connecting knitout programs to words inK .We provide an intuitive description
of our translation here, and leave formal definitions to Appendix F of our supplementary material.
The formal knitout language consists of a list of statements that each describe a mechanical

action to be performed by a knitting machine. Its syntax is as follows:

𝑘𝑠 ::= 𝑘𝑠1;𝑘𝑠2 | tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠) | knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

| split 𝑑𝑖𝑟 𝑛.𝑥 𝑛′ .𝑥 ′ 𝑙 𝑦𝑎𝑟𝑛𝑠 | miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦 | in 𝑑𝑖𝑟 𝑛.𝑥 𝑦

| out 𝑑𝑖𝑟 𝑛.𝑥 𝑦 | drop 𝑛.𝑥 | xfer 𝑛.𝑥 𝑛′ .𝑥 ′ | rack 𝑟 | nop
𝑛, 𝑛′ ::= f | b 𝑦𝑎𝑟𝑛𝑠 ::= (𝑦, 𝑠)+ (without repetition of 𝑦 values)
𝑑𝑖𝑟 ∈ {+,−} 𝑠, 𝑙 ∈ R 𝑟, 𝑥, 𝑥 ′ ∈ Z 𝑦 ∈ N

Each operation moves some part of the machine, potentially introducing crossings between strands
and moving loops. Recall that the real-valued parameters 𝑠, 𝑙 ∈ R describe metric parameters for
the length of yarn used in an operation, so they are not used in our translation.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:21

Lin et al. [12] formally describe how each formal knitout operation affects the topology of a
knitted object. As mentioned in the introduction, the effect of a knitout statement depends on
the program state: what strands and loops are attached to which needles. While some knitout
operations (miss, xfer, rack) can be directly mapped to K using their topological semantics,
other operations (in, out, drop) do not correspond to morphisms in K . Thus, we first preprocess
knitout using rewrite rules into a form amenable to mapping. Figure 16 shows an example of our
preprocessing on a diagram denoted by the knitout code in Figure 17.

▶

▶

▶

Ladder→

▶

▶

Slurp→
▶

▶

Fig. 16. Example of preprocessing a diagram of a knitted object into K . The left and middle diagrams cannot

be represented inK, as they include dropped loops, ins, and outs. The in, out operations are drawn as bulbs

at the ends of strands, and the drop operation is drawn as a loop. The out operations are slurped to their box
morphisms, the drop ladders the split, and the in operations are connected to tucks, so they are attached

to the input of the word. If we had attached the in operations to the boundary differently (by braiding them

together), this would result in a different equivalence class of words in K .

8.1 Grammar of Boxes

Recall that our knit category K includes a collection of morphisms box : 𝐴→ 𝐵 for |𝐴| ≥ 1 and
|𝐵 | ≥ 2. We define them using a grammar:
box ::= tuck 𝑑𝑖𝑟 𝑦 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡

| stitch 𝑑𝑖𝑟 𝑏𝑒𝑑 𝑙𝑜𝑜𝑝𝑠 𝑦𝑠 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝐼𝑛𝑠 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

𝑑𝑖𝑟 ∈ {+,−} 𝑏𝑒𝑑 ::= f | b 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡, 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 ∈ {true, false} 𝑦 ∈ N
𝑦𝑠 ::= N+ without repetition 𝑙𝑜𝑜𝑝𝑠 ∈ N \ {0} 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝐼𝑛𝑠, 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡𝑠 ⊆ 𝑦𝑠

Two box morphisms are equivalent if and only if they are syntactically equal. To canonicalize a
word in K, our algorithm requires a total order on every box morphism’s inputs and outputs that
reverses as the box is flipped by (·). We order strands by the direction of knitting: if the direction is
+ (in our diagrammatic language, the arrow is pointing right), we order both the input and output

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:22 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

in − f.0 2; yellow carrier 2 on left
in − f.1 1; cyan carrier 1 on right
tuck + b.1 5.0 (1, 2.0); first box
miss + f.0 2; move yellow carrier right
miss + f.1 2; move yellow carrier right
tuck + f.2 5.0 (2, 2.0); second box
rack 1; cyan loop moves right
xfer b.1 f.2; cyan loop joins yellow loop’s needle
split + f.2 b.1 5.0 (1, 2.0); third box
drop f.2; output loop of split is dropped
out + f.2 1; cyan carrier is dropped
out + f.2 2; yellow carrier is dropped

Fig. 17. Annotated formal knitout code that denotes the diagram in Figure 16.

left to right. In the − case, we order them right to left. We define boxmorphisms formally, including
their domains and codomains, in Appendix F of our supplementary material.
There are three operations that translate to boxes: tuck is mapped to the tuck variant, knit is

mapped to stitch with 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 = true, and split is mapped to stitch with 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 = false.
We call these box operations. Each box operation is guaranteed to have at least one carrier strand
𝑦 as input and at least one loop (two strands) as output. Hence a straightforward mapping of box
operations to box morphisms would satisfy K’s restrictions on box morphisms.
However, we do not directly map box operations to box morphisms. Instead, the translation

depends on the in, out, and drop operations that are connected to the box operations via a strand.
The 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡, 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝐼𝑛𝑠, 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡𝑠 and 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 fields are populated and updated depending
on the nearby in, out, and drop operations in a process we describe next.

8.2 Preprocessing Knitout

The three box operations can be mapped to box morphisms, nop translates to id morphisms, and
the three operations miss, xfer, and rack can be represented with braids. The in, out, and drop
operations do not have counterparts inK, and this subsection explains how we preprocess a knitout
program to remove them by fusing them with box morphisms.

The in operation introduces a carrier strand, out removes a carrier strand, and drop removes one
or more loops. These cannot be represented with braids alone, but they also cannot be represented
with box morphisms, as K’s restrictions on domain/codomain sizes are not satisfied: each of the
three operations has 0 inputs (in) or 0 outputs (out, drop). We instead preprocess them in a step
we call slurping, dragging them towards a connected box operation and fusing them together. We
formalize this in Appendix F as an Abstract Rewriting System (ARS) over formal knitout programs.

The case for out is simplest, so we begin with it. Topologically, an out morphism is a loose end
produced when an active carrier’s yarn is cut. However, that loose end had to start somewhere –
either a box operation, an in operation, or the strand was there at the start of the program. In the
final case, we say the out is connected to the boundary of the program. Our rewrite system drags
the out towards wherever its strand is connected to.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:23

In the common case that it connects to a box morphism, then we fuse the out with the box
operation, reducing the number of output carrier strands the box operation has by 1. Grammatically,
we set 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡 = true when fusing with a tuck and insert the carrier ID into 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝑂𝑢𝑡𝑠 for
the stitch variants. Figure 18 shows an example of an out being slurped down to fuse with a tuck.
Since every box has at least 2 output loop strands, this still satisfies our codomain restriction. In
the uncommon case where the out connects to an in, the operations cancel and are removed, as a
loose strand does not change the knitted object. If an out is connected to the boundary, then we
remove it from the program, making a note that an out was present at that location that we use
when checking program equality. Because the out was slurped to the beginning of the program, its
crossings are trivially canonicalized.

▶ → ▶ → ▶

Fig. 18. A tuck fusing with an out. The rightmost figure is the resulting diagrammatic representation in K .

Next, we handle drop. A drop removes all the loop strands on a needle. Even though there are
two strands in a loop, we can still slurp the dropped loops to wherever they came from without
snagging other strands, as there are no knitout operations that braid a strand through a loop.
Similarly to the out case, when dropped loops connect to a box operation, we fuse the drop and
the box, reducing the knit operation’s loop outputs. Unlike the out case, this may remove all
outputs from the box operation, making direct translation to K impossible, as 2 or more outputs
are required for every box morphism.

The topology of knitting offers a solution for this. Figure 19 shows a split operation laddering.
The stitches in knitting are topologically stable as long as the newly created loops are not dropped.
If those new loops are dropped, the box operation ladders into only strand crossings 𝜎, meaning
we no longer need the box morphism and K’s constraints are not invalidated. Figure 20 shows a
knit laddering. This reveals another implicit drop of the input loop, which in turn needs to be
slurped to the box it connects to. Because a box operation is destroyed each time, the laddering of
drop operations must eventually terminate. In the boundary case, drop is slurped identically to
out. Because laddering removes stitches, it is easier to slurp drop operations before in and out,
but the order does not matter.

Finally, we must handle in operations. We would like to handle them similar to out operations,
slurping them up (later in the program) instead of down. However, tuck operations only have
1 input, a carrier strand. If an in were slurped and fused with a tuck, this would again violate
K’s requirements. In this case, we instead slurp the in down and connect it to the input of the
word, treating it similarly to an out that has slurped to the boundary. Unfortunately, this process is
noncanonical and can break topological equivalence: as the in is slurped down, decisions are made
on how to braid the strand with others. In our rewrites, we choose to move the in operation to the
start of the program and not modify anything else.
This is an obvious technical limitation, but in the domain of machine knitting, it is not severe:

the majority of machine knitting programs do not have complicated use of in operations, and so
this has little effect on the value of our canonicalization of machine knitting. We provide further
analysis of this limitation in Section 11.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:24 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

▶ → ▶ →

Fig. 19. A split + f.2 b.1 5.0 (1, 2.0) operation laddering as its output loop is dropped. After laddering, all

that remains is the crossing of the carrier thread behind the loops.

▶ → ▶ → ▶ →

Fig. 20. A knit + f.𝑥 𝑙 (𝑦, 𝑠) operation laddering. After laddering, the input loop, which was implicitly

dropped by the knit, is now explicitly dropped.

Unlike tuck, the knit and split operations are guaranteed to have loop inputs, so in operations
can be slurped up and fused with them, adding the carrier ID to 𝑠𝑙𝑢𝑟𝑝𝑒𝑑𝐼𝑛𝑠 in the grammar. The
case for in operations connected to the top boundary (the end of the program) is similar to out
and drop connected to the bottom boundary.

8.3 Mapping Processed Knitout to K
After preprocessing knitout, the in, out, and drop operations are either at the beginning or end of
the program (ignored by our translation) or fused with some tuck, split, or knit where the fused
result can be mapped to a box morphism in K . The nop operation maps to id, and the remaining
three operations only introduce strand crossings so their denotation is trivial: the appropriate braid
composed of 𝜎 crossings suffices.

As mentioned previously, Lin et al. [12] mathematically defined the states that knitting machines
can have, and how each knitout operation affects machine state. A valid knitout program has a
categorical structure, where knitting machine states are objects and knitout operations are mor-
phisms. After our rewrites, this categorical structure still holds. In Appendix F of our supplementary
material, we formalize our map from processed knitout to K using a functor.

9 Applications

In this section we apply our canonicalization algorithm to outputs from two existing knitting
compiler systems. We validate the results of one and illustrate a known flaw in the other.

9.1 Validating KODA’s Optimization Results

One use case for program equivalence checking is to provide validation of the output of optimizers.
We used our canonicalization method to check the first optimization result presented in Hofmann’s
KODA paper [8]. In their optimization of a lacework example, xfer and rack instructions are
moved past knit and/or tuck instructions to provide a grouping which is amenable to efficient
machine execution. Their optimization reduces the number of carriage passes (linearly correlated
with execution time) from 7 to 4. Figure 21 shows that our canonicalization algorithm brings both
the input program and the optimized program to the same form, validating KODA’s optimization.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:25

▶

▶

▶

▶

▶

(a) Before optimization

▶

▶

▶

▶

▶

(b) After KODA optimization, canonical

Fig. 21. Checking the translation result from Figure 6 of KODA [8]. An unoptimized program’s semantic

denotation is in Figure 21a, and KODA’s optimized program’s denotation is in Figure 21b. Our canonicalization

algorithm shows the two diagrams are equivalent; our canonical form happens to be the efficient diagram in

Figure 21b.

9.2 Demonstrating an Autoknit Scheduler Limitation

Our semantics are also useful for studying the output of machine knitting compilers that translate
high-level designs into knitout. These compilers are typically complex, multi-step procedures that
transform the input through multiple intermediate representations before producing the final
machine program.

One such step is scheduling, which assigns needles to each knitting operation and moves loops
between needles as needed. The scheduler used in Narayanan et al.’s Autoknit system [20] has a
known bug: it can introduce half-twists between loops on subsequent rows of knitting as it “rolls”
tubes to set up for other operations.
By modifying the re-implementation of this scheduler released by Narayanan et al.,15 we were

able to create two schedules of the same input file to demonstrate this limitation. The input file is
a simple five-row, four-stitch-circumference tube. In our first output, we allow the scheduler to
choose its default schedule. In the other output we constrained the scheduler to knit one of the
intermediate rows of the tube in a different layout, forcing a “roll” of the tube. The semantics of the
outputs differ, demonstrating that the scheduler introduced a topological change in the knit output,
despite considering both schedules valid.

10 Related Work

Semantic Models for Machine Knitting. The topological semantics introduced in Lin et al. [12]
form the basis of our semantics. They represent stitches with fenced tangles, analogous to our box
morphisms. The authors informally algebraicize their topological semantics, but do not connect it
to diagram algebras or monoidal categories. The paper explores how to use the semantics to prove
that certain rewrites of programs are permissible; these rewrites improve the runtime efficiency
and reliability of knitting programs. We expect that our algebraic semantics, combined with our
canonicalization algorithm, will make proving and using similar rewrites easier. The work from
15Note that though we modified the code of the scheduler to allow the creation of this example, such schedule changes
can also be forced by tube splits and merges in the input object, or by arbitrary tie-breaking in the scheduler’s objective
function.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

248:26 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

Lin et al. [12] is extended in Lin et al. [13] with instruction graphs. Lin et al. [13] describe a subset
of instruction graphs that are always machine knittable.

Markande and Matsumoto [15] introduce a separate topological semantics for machine knitting.
Instead of semantics for programs, they represent semantics for program snippets: swatches of
stitches embedded on a torus. Input and output loops and strands wrap around because of the
toroidal embedding, so fences around stitches are not necessary. However, the semantics are only
able to describe swatches with the same number of input/output loops and the same number of
input/output carrier strands – most machine knitted objects do not have that form.

Machine knitting design tools have historically used representations that are not formally defined
using topology. Autoknit [20] uses a knit graph to represent how stitches are connected by loops
and carrier strands. Their abstraction does not encode crossings of loops and strands, as the authors
use Autoknit to generate knitting machine instructions to knit any manifold and orientable triangle
mesh: crossings between loops and strands are irrelevant in their semantics. As such, knit graphs
cannot differentiate between programs that are topologically distinct.

KODA [8] is an optimizing compiler that translates knitout to knitout. It does this by first lifting
knitout to an expanded knit graph, which includes information about crossings between loops
and strands by recording loop-loop and loop-strand crossings individually. While the expanded
knit graph representation does capture enough information to recreate a topologically equivalent
knitout program, KODA cannot represent all possible topological transformations. For example,
equalities by L1 are not considered by KODA. Additionally, KODA does not record movements of
carrier strands due to miss operations, so it only supports sound optimization on the subset of
knitout without miss.

Programming Languages in Fabrication. There is a rich history of applying ideas from program-
ming languages to the domain of fabrication. Nandi et al. [19] proposes the use of programming
languages techniques to the CAD process for 3D printing. The authors treat solid geometry as a
programming language, and provide a verified compiler from CAD code to meshes. They addi-
tionally supply a synthesis algorithm that translates meshes into CAD designs for easier editing.
Sottile and Tekriwal [24] detail the development of a verified interpreter for G-code for additive
manufacturing.

In a unique application, Zhu et al. [27] develop a language for machine knitting that is embedded
inside machine knit objects. They designed their machine knitting language with the intent of
developing quines for machine knitting – knitted objects that denote themselves. Clark and Bohrer
[3] introduce an imperative language for sewn quilts, with semantics inspired by homotopy type
theory.

Monoidal Categories in Programming Languages. There are many applications of monoidal cate-
gories to programming languages, often to represent semantics of computation. Bonchi et al. [1]
formulate the rewriting of string diagrams for symmetric monoidal categories using hypergraphs.
Choudhury et al. [2] reduce reversible boolean circuits to canonical forms using symmetric rig
groupoids (a special case of symmetric monoidal categories).
Outside of symmetric monoidal categories, Hasegawa and Lechenne [6] explore ribbon com-

binatory algebras, relating to the braided untyped linear lambda calculus and framed oriented
tangles. Their work expresses the geometric side of combinatory logic, and they study both braided
and balanced structures. The work in Joyal and Street [10] forms the foundation of our paper,
connecting monoidal categories and the topology of their string diagrams. Selinger [22] provides
an accessible survey of monoidal categories and their string diagrams.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

Polynomial-Time Program Equivalence for Machine Knitting 248:27

Polynomial-Time Program Equivalence. Most programming languages are not canonicalizable in
polynomial time, but one classic computational context is regular expressions, described by finite
automata [9]. Regular expressions still receive serious research attention today [17, 26].

11 Conclusion

We have presented an algebraic semantics for machine knitting and an algorithm to fully canoni-
calize those semantics into normal forms. Our canonicalization runs in polynomial time, and we
prove our algorithm’s correctness.

Our work inherits a limitation from the topological semantics in Lin et al. [12]; we do not capture
metric properties. Machine knitting is a physical process, and metrics such as the spacing between
stitches or the amount of slack on threads is not captured by our representation. Now that we have
developed the means to efficiently classify the topology of machine knitted objects, we hope to
incorporate metric properties into our algebraic representation in future work.
While our canonicalization algorithm is proven correct over words in K, our preprocessing

step makes noncanonical decisions as it maps knitout code into K . When it encounters an in
operation attached to a tuck that does not ladder, it attaches that in to the boundary. Because
in operations that connect directly to tucks tend to only appear in the beginning of machine
knitting programs, we believe that this preprocessing limitation does not affect the majority of
use cases in machine knitting. When performing local optimizations, the portion of the program
containing in operations can be ignored. In cases where our preprocessing is insufficient, a user
could modify their program to route the in operations to the boundary themselves to guarantee
properties of the canonicalization algorithm. We recognize this limitation as arising from a trade-off
between capturing all programs and equivalences in machine knitting using the full breadth of knot
theory, and capturing almost all programs and equivalences while maintaining polynomial-time
canonicalization.
We are excited to use these semantics in future programming languages research for machine

knitting. Our work develops algebraic semantics and a computable canonical form. A natural next
step is to develop an optimizing compiler for machine knitting with the formalisms and algorithm
of this paper. We expect that optimizing a language with polynomial-time equivalence checking will
produce fruitful results, but incorporating desired physical properties like metrics and fabrication
constraints may prove challenging. Finally, we hope to design a domain-specific language for
machine knitting that denotes our algebraic semantics directly. Such a language could serve as
an intermediate representation for design tools, enabling creators to formally and declaratively
describe machine knitted objects without specifying how to fabricate them on a knitting machine.

Acknowledgments

We thank Hannah Fechtner for detailed mathematical review and guiding us towards twisted
involutive monoidal categories, and thank Ryan Zambrotta for helpful discussion. This material is
based upon work partially supported by the National Science Foundation under Grant No. 2319181
and 2319182.

References

[1] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. 2016. Rewritingmodulo symmetric
monoidal structure. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (New York,
NY, USA) (LICS ’16). Association for Computing Machinery, New York, NY, USA, 710–719. doi:10.1145/2933575.2935316

[2] Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. 2022. Symmetries in reversible programming: from symmetric
rig groupoids to reversible programming languages. Proc. ACM Program. Lang. 6, POPL, Article 6 (Jan. 2022), 32 pages.
doi:10.1145/3498667

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1145/3498667

248:28 Nathan Hurtig, Jenny Han Lin, Thomas S. Price, Adriana Schulz, James McCann, and Gilbert Louis Bernstein

[3] Charlotte Clark and Rose Bohrer. 2023. Homotopy Type Theory for Sewn Quilts. In Proceedings of the 11th ACM

SIGPLAN International Workshop on Functional Art, Music, Modelling, and Design (Seattle, WA, USA) (FARM 2023).
Association for Computing Machinery, New York, NY, USA, 32–43. doi:10.1145/3609023.3609803

[4] Patrick Dehornoy. 2008. Efficient solutions to the braid isotopy problem. Discrete Applied Mathematics 156, 16 (2008),
3091–3112. doi:10.1016/j.dam.2007.12.009 Applications of Algebra to Cryptography.

[5] J. M. Egger. 2011. On Involutive Monoidal Categories. Theory and Applications of Categories 25 (2011), 368–393.
http://www.tac.mta.ca/tac/volumes/25/14/25-14.pdf

[6] Masahito Hasegawa and Serge Lechenne. 2024. Braids, Twists, Trace and Duality in Combinatory Algebras. In
Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (Tallinn, Estonia) (LICS ’24).
Association for Computing Machinery, New York, NY, USA, Article 42, 14 pages. doi:10.1145/3661814.3662098

[7] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. 1999. The computational complexity of knot and link problems.
J. ACM 46, 2 (March 1999), 185–211. doi:10.1145/301970.301971

[8] Megan Hofmann. 2024. KODA: Knit-program Optimization by Dependency Analysis. In Proceedings of the 37th Annual

ACM Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing
Machinery, New York, NY, USA, Article 64, 15 pages. doi:10.1145/3654777.3676405

[9] John Hopcroft. 1971. An n log n algorithm for minimizing states in a finite automaton. In Theory of Machines and

Computations, Zvi Kohavi and Azaria Paz (Eds.). Academic Press, Cambridge, MA, USA, 189–196. doi:10.1016/B978-0-
12-417750-5.50022-1

[10] André Joyal and Ross Street. 1991. The geometry of tensor calculus, I. Advances in Mathematics 88, 1 (1991), 55–112.
doi:10.1016/0001-8708(91)90003-P

[11] Greg Kuperberg. 2014. Knottedness is in NP, modulo GRH. Advances in Mathematics 256 (2014), 493–506. doi:10.1016/
j.aim.2014.01.007

[12] Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James Mccann. 2023.
Semantics and Scheduling for Machine Knitting Compilers. ACM Trans. Graph. 42, 4, Article 143 (July 2023), 26 pages.
doi:10.1145/3592449

[13] Jenny Han Lin, Yuka Ikarashi, Gilbert Louis Bernstein, and James McCann. 2024. UFO Instruction Graphs Are Machine
Knittable. ACM Trans. Graph. 43, 6, Article 206 (Nov. 2024), 22 pages. doi:10.1145/3687948

[14] Logica. 2023. PaintKnit. [Online]. Available from: https://www.paintknit.com.
[15] Shashank G Markande and Elisabetta Matsumoto. 2020. Knotty Knits are Tangles in Tori. In Proceedings of Bridges

2020: Mathematics, Art, Music, Architecture, Education, Culture, Carolyn Yackel, Robert Bosch, Eve Torrence, and
Kristóf Fenyvesi (Eds.). Tessellations Publishing, Phoenix, Arizona, 103–112. http://archive.bridgesmathart.org/2020/
bridges2020-103.html

[16] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins.
2016. A compiler for 3D machine knitting. ACM Trans. Graph. 35, 4, Article 49 (July 2016), 11 pages. doi:10.1145/
2897824.2925940

[17] Dan Moseley, Mario Nishio, Jose Perez Rodriguez, Olli Saarikivi, Stephen Toub, Margus Veanes, Tiki Wan, and Eric
Xu. 2023. Derivative Based Nonbacktracking Real-World Regex Matching with Backtracking Semantics. Proc. ACM
Program. Lang. 7, PLDI, Article 148 (June 2023), 24 pages. doi:10.1145/3591262

[18] K. Murasugi and B. Kurpita. 1999. A Study of Braids. Springer Netherlands, Norwell, MA, USA. https://books.google.
com/books?id=tbi_FDbSJo0C

[19] Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and Zachary Tatlock. 2018.
Functional programming for compiling and decompiling computer-aided design. Proc. ACM Program. Lang. 2, ICFP,
Article 99 (July 2018), 31 pages. doi:10.1145/3236794

[20] Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann. 2018. Automatic Machine Knitting
of 3D Meshes. ACM Trans. Graph. 37, 3, Article 35 (Aug. 2018), 15 pages. doi:10.1145/3186265

[21] Vanessa Sanchez, Kausalya Mahadevan, Gabrielle Ohlson, Moritz A. Graule, Michelle C. Yuen, Clark B. Teeple, James C.
Weaver, James McCann, Katia Bertoldi, and Robert J. Wood. 2023. 3D Knitting for Pneumatic Soft Robotics. Advanced
Functional Materials 33, 26 (2023), 2212541. doi:10.1002/adfm.202212541

[22] P. Selinger. 2011. A Survey of Graphical Languages for Monoidal Categories. Springer Berlin Heidelberg, Berlin,
Heidelberg, 289–355. doi:10.1007/978-3-642-12821-9_4

[23] Shima Seiki. 2011. SDS-ONE Apex3. [Online]. Available from: http://www.shimaseiki.com/product/design/sdsone_
apex/flat/.

[24] Matthew Sottile and Mohit Tekriwal. 2024. Design and Implementation of a Verified Interpreter for Additive Manufac-
turing Programs (Experience Report). In Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional

Software Architecture (Milan, Italy) (FUNARCH 2024). Association for Computing Machinery, New York, NY, USA,
10–17. doi:10.1145/3677998.3678221

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

https://doi.org/10.1145/3609023.3609803
https://doi.org/10.1016/j.dam.2007.12.009
http://www.tac.mta.ca/tac/volumes/25/14/25-14.pdf
https://doi.org/10.1145/3661814.3662098
https://doi.org/10.1145/301970.301971
https://doi.org/10.1145/3654777.3676405
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1016/j.aim.2014.01.007
https://doi.org/10.1016/j.aim.2014.01.007
https://doi.org/10.1145/3592449
https://doi.org/10.1145/3687948
https://www.paintknit.com
http://archive.bridgesmathart.org/2020/bridges2020-103.html
http://archive.bridgesmathart.org/2020/bridges2020-103.html
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/3591262
https://books.google.com/books?id=tbi_FDbSJo0C
https://books.google.com/books?id=tbi_FDbSJo0C
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3186265
https://doi.org/10.1002/adfm.202212541
https://doi.org/10.1007/978-3-642-12821-9_4
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://doi.org/10.1145/3677998.3678221

Polynomial-Time Program Equivalence for Machine Knitting 248:29

[25] Stoll. 2011. M1Plus pattern software. [Online]. Available from: http://www.stoll.com/stoll_software_solutions_en_4/
pattern_software_m1plus/3_1.

[26] Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2025. RE#: High Performance Derivative-Based Regex Matching
with Intersection, Complement, and Restricted Lookarounds. Proc. ACM Program. Lang. 9, POPL, Article 1 (Jan. 2025),
32 pages. doi:10.1145/3704837

[27] Amy Zhu, Adriana Schulz, and Zachary Tatlock. 2023. Exploring Self-Embedded Knitting Programs with Twine. In
Proceedings of the 11th ACM SIGPLAN International Workshop on Functional Art, Music, Modelling, and Design (Seattle,
WA, USA) (FARM 2023). Association for ComputingMachinery, New York, NY, USA, 25–31. doi:10.1145/3609023.3609805

Received 2025-02-27; accepted 2025-06-27

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 248. Publication date: August 2025.

http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://doi.org/10.1145/3704837
https://doi.org/10.1145/3609023.3609805

	Abstract
	1 Introduction
	2 Overview
	3 Semantic Domain
	3.1 Prior Definitions
	3.2 Twisted Involutive Monoidal Categories
	3.3 Our Categorical Semantics

	4 Getting Started with Braids
	5 Introducing Boxes
	5.1 Formalizing Layer

	6 Finishing the Canonicalization
	6.1 Move-past Procedure
	6.2 Achievable Canonical Order

	7 Outline of Algorithm's Correctness
	7.1 Move-past Procedure
	7.2 Algorithm Canonicalizes
	7.3 Polynomial-Time Execution

	8 Translating Knitout
	8.1 Grammar of Boxes
	8.2 Preprocessing Knitout
	8.3 Mapping Processed Knitout to K

	9 Applications
	9.1 Validating KODA's Optimization Results
	9.2 Demonstrating an Autoknit Scheduler Limitation

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

